Taehoon Kim ${ }^{\text {a }}$ and Kyongtae Kim ${ }^{\text {b }}$
${ }^{\text {a }}$ Kolon Life Science, Inc. 207-2, Mabuk-Dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-797, Korea
${ }^{\mathrm{b}}$ Department of Chemistry, Seoul National University, Seoul 151-742, Korea
*E-mail: kth419@unitel.co.kr
Received July 7, 2009
DOI 10.1002/jhet. 275
Published online 29 December 2009 in Wiley InterScience (www.interscience.wiley.com).

Treatment of 1-(2-azidoarylmethyl)- $1 H$-benzotriazoles (6) with $n-\mathrm{BuLi}$ (2.5 equiv.) in THF at $-78^{\circ} \mathrm{C}$, followed by an addition of alkyl halides such as allyl, benzyl, and ethyl bromides with stirring for 2 h at room temperature afforded 2-(dialkylamino)-3-(benzotriazol-1-yl)-2H-indazoles (8), 3-(benzotriazol1 -yl)-2H-indazoles (9), 2-[(benzotriazol-1-yl)methyl]arylamine (10), and 2-[(benzotriazol-1-yl)(alkyl) methyl]arylamine (11).
J. Heterocyclic Chem., 47, 98 (2010).

INTRODUCTION

Benzotriazole has received a great amount of attention over the last three decades owing to the potential utility as a synthetic auxiliary for the synthesis of a diverse class of organic compounds [1]. Recently, we reported the reactions of 3-(benzotriazol-1-yl)-2,3-disubstituted propenyl phenyl sulfoxides 3 [2], prepared from 1-(arylmethyl)-1H-benzotriazoles 2a and 1-aryl-2-chloroethanone in five steps, with trifluoroacetic anhydride (TFAA) yielding triazapentalenes 4 via a Pummerertype intramolecular nucleophilic attack of N-2 of the benzotriazole moiety [2a] (Scheme 1).

In connection with the exploration of the synthetic utility of $\mathbf{1}$, the introduction of an alkyl group at the benzylic position of 1-(2-azidoarylmethyl)- 1 H -benzotriazoles $6\left(R^{2}=2-N_{3}\right)$ was attempted simply because the azido group may be utilized as a precursor for generation of nitrene [3]. Nitrene is known as a useful reactive species for the synthesis of nitrogen-containing heterocyclic compounds via insertion or addition reactions. One can envisage the reaction of a benzylic carbanion, generated from compounds 6 by a strong base, with alkyl halides. However, a problem to be encountered with this methodology is to overcome the possible reaction of the azido group with the strong base. A search through the literature showed that simple alkyl azides reacted with both Grignard reagents in diethyl ether at
$0^{\circ} \mathrm{C}$ or alkyllithiums in n-pentane to give alkyltriazenes [4]. The latter reactions in ether did not occur. The reaction leading to triazenes was sensitive to the solvents. Furthermore, to the best of our knowledge, there has been no report on the reactions of aryl azides with both Grignard reagents and alkyllithiums. Compounds 6 are insoluble in n-pentane at room temperature. Consequently, it was necessary to obtain information on the reactivity of aryl azides including 6 toward various bases. The results obtained from our examination are described herein.

RESULTS AND DISCUSSION

2-Azidobenzyl bromides $5\left(\mathrm{R}^{2}=2-\mathrm{N}_{3}, \mathrm{X}=\mathrm{Br}\right)$, precursors of 1-(2-azidoarylmethyl)- 1 H -benzotriazoles $\mathbf{6 a -}$ $\mathbf{b}, \mathbf{6 d}-\mathbf{e}$, and $\mathbf{6 g}$, were prepared by diazotization of o-toluidine derivatives, followed by bromination of the methyl group using NBS in the presence of benzoyl peroxide [5b]. On the other hand, 2-azidobenzyl chloride 5 $\left(\mathrm{R}^{2}=2-\mathrm{N}_{3}, X=\mathrm{Cl}\right)$, precursors of compounds $\mathbf{6 c}$ and 6f, were prepared by diazotization of 2-aminobenzyl alcohols, followed by chlorination using SOCl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Treatment of $\mathbf{5}$ with benzotriazoles $\mathbf{1 a}-\mathbf{b}$ in the presence of NaOEt in absolute ethanol [6] gave a mixture of 6 and 2-(2-azidoarylmethyl)- 2 H -benzotriazoles 7 which were separated by chromatography (Scheme 2).

Scheme 1

Yields of compounds 6 and 7 are summarized in Table 1.

Treatment of $\mathbf{6 a}$ with $n-B u L i$ (1.1 equiv.) in THF at $-78^{\circ} \mathrm{C}$, followed by addition of allyl bromide (1.1 equiv.) with stirring for 1 h did not reveal any new spots except for those of the starting materials on TLC. However, after being stirred at room temperature for 2 h , TLC of the reaction mixture showed four spots including that corresponding to $\mathbf{6 a}\left(R_{\mathrm{f}}=0.71\right.$, EtOAc: n-hexane $=1: 4$). Chromatography of the reaction mixture (silica gel, $70-230$ mesh) gave two 2 H -indazole derivatives 8a $\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{H}\right)(25 \%)$, $\mathbf{9} \mathbf{a}\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{H}\right)(21 \%)$, 2-[(benzotriazol-1-yl)methyl]phenylamine (10a) $\left(R=R^{1}\right.$ $=\mathrm{H})(25 \%)$ and 2-[1-(benzotriazol-1-yl)-3-butenyl]phenylamine (11a) ($\mathrm{R}=\mathrm{R}^{1}=\mathrm{H}$) (0%) together with unreacted 6a (24%) containing a minute amount of 1-[(2-azidophenyl)(allyl)methyl]-1H-benzotriazole (12a) (Scheme 3). The yield of each product was variable depending on the concentrations of $n-\mathrm{BuLi}$ and allyl bromide. The results are summarized in Table 2.

Table 2 shows that compounds 9 a and 10a were formed without allyl bromide and a considerable amount of $\mathbf{6 a}(40 \%)$ remained unreacted when 1.0 molar equiv. of n-BuLi was employed (entry 1). The result is inconsistent with the formation of dialkyltriazenes from analogous reactions involving simple alkyl azides and alkyllithiums in n-pentane [4a]. However, the reaction of $\mathbf{6 a}$ with MeMgBr in THF for 1 h at $0^{\circ} \mathrm{C}$, and subsequently at room temperature for 2 h , gave methyltriazene $\mathbf{1 3}$ (91%) as expected. The ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Scheme 2. Reagents and conditions: For $X=B r$, (i) 1a (or 1b), NaOEt , absolute EtOH , rt, 12 h ; For $\mathrm{X}=\mathrm{Cl}$, (i) 1a, NaOEt, absolute EtOH , reflux, 5 h .

Table 1
Yields of compounds 6 and 7.

						Yield $^{\mathrm{a}}$ $(\%)$	
Compd	R	R^{1}	R^{2}	X	Compd	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1 a}$	H	H	$2-\mathrm{N}_{3}$	Br	\mathbf{a}	50	19
$\mathbf{1 a}$	H	$5-\mathrm{MeO}$	$2-\mathrm{N}_{3}$	Br	\mathbf{b}	44	19
$\mathbf{1 a}$	H	$3-\mathrm{Me}$	$2-\mathrm{N}_{3}$	Cl	\mathbf{c}	55	16
$\mathbf{1 a}$	H	$5-\mathrm{Br}$	$2-\mathrm{N}_{3}$	Br	\mathbf{d}	47	22
$\mathbf{1 a}$	H	$4-\mathrm{Cl}$	$2-\mathrm{N}_{3}$	Br	\mathbf{e}	51	26
$\mathbf{1 a}$	H	$5-\mathrm{Cl}^{2}$	$2-\mathrm{N}_{3}$	Cl	\mathbf{f}	48	23
$\mathbf{1 a}$	H	$5-\mathrm{NO}_{2}$	$2-\mathrm{N}_{3}$	Br	\mathbf{g}	42	18
$\mathbf{1 a}$	H	H	$4-\mathrm{N}_{3}$	Br	\mathbf{h}	47	20
$\mathbf{1 b}$	Cl	H	$2-\mathrm{N}_{3}$	Br	\mathbf{i}	44^{b}	19

${ }^{\mathrm{a}}$ Isolated yields.
${ }^{\mathrm{b}}$ Total yield of 1-(2-azidobenzyl)-5-chloro-1H-benzotriazole ($\mathbf{6} \mathbf{i}^{\prime}$) and 1-(2-azidobenzyl)-6-chloro-1H-benzotriazole (6i).
spectrum showed a singlet at 3.24 ppm , corresponding to the structure of $\mathbf{1 3}$.

On addition of allyl bromide (1.1 equiv.), compound $\mathbf{8 a}$ was obtained in 20% yield at the expense of $\mathbf{6 a}$ and $\mathbf{1 0 a}$ (entry 2). The amounts of recovered $\mathbf{6 a}$ as well as $\mathbf{8 a}$ were decreased somewhat by two-fold increase of the concentration of n-BuLi only (entry 3). When the concentrations of n-BuLi and allyl bromide were increased two-fold, respectively (entry 4), the yield of $\mathbf{8 a}$ increased to 38% at the expense of 9 a and $\mathbf{6 a}$. However, further increase in the concentration of $n-\mathrm{BuLi}$ (4.0 equiv.) while maintaining the same concentration of

Table 2
Yields of compounds 8a-11a at the different concentrations of n-BuLi and allyl bromide when $[\mathbf{6 a}]=1.40 \mathrm{mmol}$.

Entry	$n-\mathrm{BuLi}$ (equiv.)	Allyl bromide (equiv.)	Yield ${ }^{\text {a }}$ (\%)				
			8a	9a	10a	11a	Unreacted (6a)
1	1.0	0	0	24	37	0	40
2	1.1	1.1	20	21	25	0	$24^{\text {b }}$
3	2.0	1.1	15	17	28	0	$18^{\text {b }}$
4	2.5	2.2	38	15	5	18	$13^{\text {b }}$
5	4.0	2.2	39	13	0	25	$5^{\text {b }}$

${ }^{\text {a }}$ Isolated yields.
${ }^{\mathrm{b}}$ Yields on the basis of the ${ }^{1} \mathrm{H}$ NMR intensities of a mixture of $\mathbf{6 a}$ and 12a.
allyl bromide (2.2 equiv.), did not affect the yields of $8 \mathbf{a}$ and $9 \mathbf{a}$ but only reduced the amount of unreacted $\mathbf{6 a}$ by 5\% (entry 5). Finally, the amount of unreacted 6a decreased with increase in the concentration of $n-\mathrm{BuLi}$ and yet the yield of $\mathbf{8 a}$ did not exceed 39%. In addition, the yields of 9 a were not much affected by altering the concentrations of either n-BuLi or allyl bromide.

Since the yields of compound 11a increased with the concentrations of n - BuLi and allyl bromide (entries 4 and 5) and the sum of the yields of 10a and 11a appeared nearly constant, 10a, prepared independently from 6 a and NaBH_{4} [7], was treated with allyl bromide (2.5 and 3.0 equiv.) in the presence of $n-\operatorname{BuLi}$ (2.5 and 3.0 equiv.) in THF for 1 h at $0^{\circ} \mathrm{C}$, and subsequently at room temperature for 2 h to observe if compound 11a is formed via compound 10a. From the reactions were obtained 11a (0 and 3\%), allyl[2-\{(benzotriazol-1-yl)methyl \}phenyl]amine (14) (38 and 16\%), diallyl[2-\{(benzo-triazol-1-yl)methyl\}phenyl]amine (15) (33 and 41\%), and allyl[2-\{1-(benzotriazol-1-yl)-3-butenyl $\}$ phenyl]amine (16) (5 and 17\%), respectively (Scheme 4). Compounds 14-16 were not detected in the reaction of $\mathbf{6 a}$ under similar conditions but compound 11a was observed (Scheme 4).

The result indicates that a small portion of compound 11a may be formed via 10a. For optimization of the reaction conditions, the reactions of $\mathbf{6 a}(1.25 \mathrm{mmol})$ with allyl bromide were carried out in the presence of
various bases under the same foregoing conditions. The results are summarized in Table 3.

Table 3 showed that not only a considerable amount of $\mathbf{6 a}$ was used up to give unidentifiable mixtures but also a large quantity of unreacted $\mathbf{6 a}$ was recovered. Consequently, n - BuLi was employed as a base for reactions of other compounds 6 . Yields of $\mathbf{8 - 1 1}$ and unreacted 6 are summarized in Table 4.

The structure of $\mathbf{8}$ was determined on the basis of the X-ray crystal structure of $\mathbf{8 g}$ (Fig. 1).

The structures of 9 were determined on the basis of spectroscopic and analytical data. In particular, the HMBC spectrum of 9 a shows that the N2-H proton correlates with C 3 a and C 7 a carbon atoms, which clearly indicates that the compound is 2 H -indazole derivative [8] rather than $1 H$-indazole derivative.

To obtain mechanistic information, $\mathbf{6 h}$ was subjected to the same foregoing conditions (Scheme 5). From the reaction were obtained allylated compound 19 (4\%) and amino compound 20 (45\%) together with unreacted $\mathbf{6 h}$ (28%). The result indicated that reduction of the azido group yielding amino group occurs readily compared with allylation at the benzylic position.

Although there exist plentiful examples of the direct conversion of an azido group to an amino group [9], n -BuLi-mediated the same type of conversion has seldom appeared in the literature [10]. We have found that treatment of simple aryl azides with $n-\mathrm{BuLi}$ (2.0 equiv.) under the same foregoing conditions gave arylamine as

Table 3
Yields of compounds $\mathbf{8 a}, \mathbf{9 a}, \mathbf{1 0 a}$, and unreacted $\mathbf{6 a}$.

Base (equiv.)	Condition ${ }^{\text {a }}$	Yield ${ }^{\text {b }}$ (\%)			
		8a	9a	10a	6a
tert-BuLi (1.5)	c			g	
NaH (1.5)	d	0	0	trace	82
NaNH_{2} (1.5)	c	0	0	0	75
$n-\mathrm{BuLi}$ (1.5)	c, e	15	12	25	21
$\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(1.5)$	c	5	0	0	81
LDA (1.5)	c,f	6	8	15	41
LDA (1.2)	c	9	15	13	33

${ }^{a}$ Allyl bromide (1.5 equiv.) was used.
${ }^{\mathrm{b}}$ Isolated yields.
${ }^{\mathrm{c}}-78^{\circ} \mathrm{C}(1 \mathrm{~h}) \rightarrow \mathrm{rt}(2 \mathrm{~h}), \mathrm{THF}$.
${ }^{\mathrm{d}} \mathrm{rt}(5 \mathrm{~h})$, THF.
${ }^{\mathrm{e}} n$-BuLi, followed by tert-BuOK (1.0 equiv.) was added.
${ }^{\mathrm{f}}$ LDA, followed by TMEDA (1.0 equiv.) was added.
${ }^{\mathrm{g}}$ Unidentifiable complex mixture.
major compounds (Scheme 6). Product yields are summarized in Table 5.
The formation of 19 coupled with 12 c as minor product indicates that alkylation at the benzylic posi-

Figure 1. ORTEP drawing of $\mathbf{8 g}$. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
tion occurs under the conditions where the azido group is intact. Of course, compounds analogous to $\mathbf{8}$ and 9 cannot be formed from the reaction of $\mathbf{6 h}$. Interestingly, the reaction of $\mathbf{6 a}$ with a mixture of an equal

Table 4
Yields of compounds $\mathbf{8 a}, \mathbf{9 a}, \mathbf{1 0 a}$, and unreacted $\mathbf{6 a}$.

Reactant		Product, Yield ${ }^{\text {a }}$ (\%)					
Compd (R)	R^{3}	Compd	$8\left(\mathrm{R}^{1}\right)$	$9\left(\mathrm{R}^{1}\right)$	10 (R^{1})	11 (R^{1})	$6\left(\mathrm{R}^{1}\right)$
6a (H)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	a	38 (H)	14 (H)	2 (H)	19 (H)	3 (H)
6a (H)	Et	b	25 (H)	13 (H)	$21(\mathrm{H})$	0 (H)	trace (H)
6a (H)	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	c	$0(0)^{\text {b }}$ (H)	16 (21) ${ }^{\text {b }}$ (H)	$20(14)^{\text {b }}$ (H)	$4(0)^{\text {b,c }}$	0 (4) ${ }^{\text {b }}$ (H)
6 a (H)	Bn	d	31 (H)	16 (H)	5 (H)	6 (H)	4 (H)
6 a (H)	$n-\mathrm{Bu}$	e	0 (H)	18 (H)	0 (H)	$13^{\text {d }}$ (H)	0 (H)
6 a (H)	tert-Bu	f	0 (H)	21 (H)	14 (H)	0 (H)	31 (H)
6b (H)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	g	24 (5-MeO)	19 (5-MeO)	8 (4-MeO)	$3^{\text {e }}$ (4-MeO)	3 (5-MeO)
6 c (H)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	h	34 (7-Me)	13 (7-Me)	10 (6-Me)	$5^{\text {e }}$ (6-Me)	trace (3-Me)
6d (H)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	i	26 (5-Br)	14 (5-Br)	7 (4-Br)	$4^{\text {e }}$ (4-Br)	2 (5-Br)
6e (H)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	j	26 (6-Cl)	16 (6-Cl)	$5(5-\mathrm{Cl})$	$6^{\text {e }}$ (5-Cl)	2 (4-Cl)
6 f (H)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	k	28 (5-Cl)	17 (5-Cl)	2 (4-Cl)	$8^{\text {e }}$ (4-Cl)	$4(5-\mathrm{Cl})$
6 g (H)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$				f		
$6 \mathbf{i}$ (Cl)	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	1	30 (H)	12 (H)	6 (H)	0 (H)	2 (H)

[^0]

17

18

molar amount of allyl bromide (1.2 equiv.) and benzyl bromide (1.2 equiv.) under the same foregoing conditions showed four spots on TLC (silica gel, EtOAc:nhexane $=1: 4)$, corresponding to $\mathbf{8 d}\left(R_{\mathrm{f}}=0.79\right)$, a mixture of 8a and $23\left(R_{\mathrm{f}}=0.70\right), 9 \mathrm{a}\left(R_{\mathrm{f}}=0.42\right)$, and 10a ($R_{\mathrm{f}}=0.27$) along with a weak spot having a long tail (Scheme 7).

An attempt at separation of the mixture of $\mathbf{8 a}$ and $\mathbf{2 3}$ was unsuccessful. However, FAB MS shows mass number $(m / z) 331\left(\mathrm{M}^{+}+1\right)$ and $381\left(\mathrm{M}^{+}+1\right)$, corresponding to the molecular weight of $8 \mathbf{8}$ and 23 plus one, respectively. The formation of 23 suggests that the R^{3} of compounds $\mathbf{8}$ is introduced in a stepwise manner.

The formation of compound 8a may be initiated by deprotonation of benzylic hydrogen to give a carbanion 24, followed by an intramolecular nucleophilic attack of the carbanion on the tetravalent nitrogen atom of an azido group, leading to a five-membered intermediate 25 with a negative charge on each nitrogen atom (Scheme 8).

Monoalkylation of $\mathbf{2 5}$ gives 1,3-dipolar intermediate 26a, which is stabilized by a resonance form 26b. Subsequent allylation, followed by deprotonation would give 8a. In the meantime, a nucleophilic attack of n butyl carbanion on an azido group gives 1-n-butyl-3phenyltriazene 27a [4], which may be stabilized by a resonance form 27b. Intramolecular proton transfer of 27a would generate a carbanion 28. Protonation of 28, followed by decomposition would give 10a or 17 [11]. Alternatively, compounds 10 a and 17 can be formed from intermediate 27 via the same protonation and decomposition processes. In contrast, intramolecular nucleophilic attack of the benzylic carbanion 29, a tautomer of 28, on the trivalent nitrogen concomitant with displacing the n-butylamide ion would lead to $\mathbf{3 0}$, a tautomer of 9a and 31. However, we obtained 9a as a single compound. It has been reported that $1 H$-indazoles are thermodynamically more stable than 2 H -indazoles
[12] and that the equilibrium position between tautomers is dependent on the solvent polarity. However, molecular mechanics calculations show that $\mathbf{8 g}(E=35.75$ $\mathrm{kcal} / \mathrm{mol})$ is more stable than its $1 H$-isomer $(E=38.54$ $\mathrm{kcal} / \mathrm{mol}$) by $2.79 \mathrm{kcal} / \mathrm{mol}$ [13]. Similarly, 2 H -indazole 9a $(E=29.75 \mathrm{kcal} / \mathrm{mol})$ is more stable than its $1 H$-indazole isomer ($E=33.70 \mathrm{kcal} / \mathrm{mol}$) by $3.95 \mathrm{kcal} / \mathrm{mol}$. This tendency is consistent with the experimental results. Further study is necessary to delineate why $2 \mathrm{H}-\mathbf{8}$ and $2 \mathrm{H}-9$ are more stable than $1 H-8$ and $1 \mathrm{H}-9$, respectively. A nucleophilic attack of the carbanion 24 on allyl bromide would give 12a, analogous to 19. A similar reaction of 12a as shown in the formation of 10a from 27a would give 11a.

CONCLUSION

In summary, when 1-(2-azidoarylmethyl)- 1 H -benzotriazoles (6) was treated with n - BuLi in THF at $-78^{\circ} \mathrm{C}$, followed by an addition of alkyl halides, i.e., allyl, benzyl, ethyl bromides, TLC did not exhibit any new spots. On the other hand, four new spots corresponding to 2 H indazole derivatives $\mathbf{8}$ and $\mathbf{9}$, which to the best of our knowledge had not been previously reported in the reactions of azido compounds, together with some weak spots, were observed at room temperature. Compounds $\mathbf{8}$ are envisaged to be formed by a nucleophilic attack of benzylic carbanion on the azido group, followed by displacement of halides twice in stepwise manner by the $\mathrm{S}_{N} 2$ mechanism. Compounds 9 would be formed by a nucleophilic attack of benzylic carbanion on triazenes. The formation of compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ may be

Table 5
Yields of compounds 21 and 22.

			Yield $^{\mathrm{a}}(\%)$	
Compd	R^{4}	R^{5}	$\mathbf{2 1}$	$\mathbf{2 2}$
\mathbf{a}	H	Me	69	8
\mathbf{b}	Me	H	76	6
\mathbf{c}	Et	H	69	8
\mathbf{d}	Bz	H	72	7

${ }^{\mathrm{a}}$ Isolated yields.

Scheme 7. Reaction of $6 \mathbf{a}$ with the mixture of an equal molar amount of allyl bromide and benzyl bromide.

Scheme 8. Proposed mechanism of formation to the compounds 8, 9, 10, 11, and 17.

explained in terms of decomposition of triazene, which has been reported in the literature [5].

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra was recorded at 300 MHz , unless otherwise stated in CDCl_{3} solution containing tetramethylsilane as internal standard: J values are given in hertz (Hz). The ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz , unless otherwise stated in CDCl_{3} solution. IR spectra were recorded in KBr or thin-film samples on KBr plates. Mass spectra were obtained by electron impact at 70 eV . Elemental analyses were determined by the National Center for Inter-University Research Facilities, Seoul National University. Column chromatography was performed using silica gel (Merck, 70-230 mesh ASTM). Mps were determined on a Fisher-Johns melting-point apparatus and are uncorrected.

General procedure for the synthesis of 2-azidoarylmethyl halides 5

2-Azidoarylmethyl bromides 5a-b, 5d-e, and 5g-h. To a stirred solution of arylamine (32.80 mmol) in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(6 \mathrm{~mL})$ was added $\mathrm{NaNO}_{2}(39.36 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , followed by addition of NaN_{3} (55.76 mmol), which was additionally stirred for 24 h . Workup according to the literature procedure [5a] gave substituted 2 -azidotoluenes. A mixture of 2 -azidotoluene, N -bromosuccinimide (NBS) (1.05 equiv.) and benzoyl peroxide (0.05 equiv.) in benzene (60 mL) was heated at reflux for 24 h [5b]. Usual work-up of the reaction mixture gave 5a-b (73, 87\%), 5d-e ($79,64 \%$), and $5 \mathrm{~g}(89 \%)$, respectively. Similarly, 4-azidobenzyl bromide ($\mathbf{5 h}$) was prepared from 4 -azidotoluene in 90% yield.

2-Azidoarylmethyl chlorides 5c and 5f. To a stirred solution of substituted 2-aminoarylmethyl alcohols (32.80 mmol) in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(6 \mathrm{~mL})$ was added $\mathrm{NaNO}_{2}(39.36$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 30 min , followed by addition of NaN_{3} (55.76 mmol). The mixture was additionally stirred for 24 h , followed by usual work-up gave substituted 2-azidoarylmethyl alcohol. Treatment of 2-azidoarylmethyl alcohols with thionyl chloride [5 c] (1.2 equiv.) at $0^{\circ} \mathrm{C}$ for 3 h gave $\mathbf{5 c}$ (63%) and $\mathbf{5 f}$ (62%).

General procedure for the synthesis of 1-(2-azidoaryl-methyl)-1H-benzotriazoles 6 and 2 -(2-azidoarylmethyl)- 2 H benzotriazoles 7. To a stirred solution of sodium (5.65-8.82 $\mathrm{mmol})$ in absolute ethanol (20 mL) was added a solution of benzotriazole (1a) ($5.38-8.40 \mathrm{mmol}$) in absolute ethanol $(30 \mathrm{~mL})$. The mixture was stirred for 20 min , followed by addition of 5 ($5.65-8.82 \mathrm{mmol})$, which was heated for 3.5 h at reflux. Work-up according to the literature procedure [6] gave compounds 6 and 7. Yields are listed in Table 1.

1-(2-Azidophenylmethyl)-1H-benzotriazole $\mathbf{6 a} . \mathrm{Mp} 97-99^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 62.3; H, 3.95; N, 33.7. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6}: \mathrm{C}, 62.4 ; \mathrm{H}, 4.0 ; \mathrm{N}, 33.6 \%\right)$; $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3040,2944,2112,1572,1480,1441,1302,1278,1216$, 1152, 1073, 752, 739, and 523; ${ }^{1} \mathrm{H}$ NMR $\delta 5.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, 7.05-7.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.22 ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}$), 7.34-7.41 $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.46(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.0, \mathrm{ArH}), 7.53(1 \mathrm{H}, \mathrm{d}$, $J 7.2, \mathrm{ArH})$ and $8.08(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 47.4$, 110.2, 118.7, 120.4, 124.3, 125.6, 126.3, 126.4, 127.8, 130.3, 133.3, 138.3, and 146.5.

2-(2-Azidophenylmethyl)-2H-benzotriazole 7a. Mp 114$116^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, $62.35 ; \mathrm{H}, 3.9$; N, 33.7. Calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6}$: C, 62.4; H, 4.0; $\mathrm{N}, 33.6 \%$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056,2936,2104,1577,1489,1444,1283,1158$, 1084, 851, 745, and 530; ${ }^{1} \mathrm{H}$ NMR $\delta 5.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.05$ $(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.12(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{d}, J$ $7.6, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH}), 7.33(2 \mathrm{H}, \mathrm{dd}, J 6.6$ and 3.1, ArH), and $7.86(2 \mathrm{H}, \mathrm{dd}, J 6.6$ and $3.1, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR δ $55.6,118.6,118.7,125.4,126.2,126.8,130.4,130.9,138.7$, and 144.7 .

1-[(2-Azido-5-methoxy)phenylmethyl]-1H-benzotriazole 6b. Mp $89-91^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, 56.1 ; H, 4.3; N, 30.1. Calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 56.0 ; \mathrm{H}, 4.3 ; \mathrm{N}, 30.0 \%$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056,2930,2824,2108,1603,1494,1446,1424$, 1281, 1236, 1155, 1078, 1032, 811, 744, and 521; ${ }^{1} \mathrm{H}$ NMR δ $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.67(1 \mathrm{H}, \mathrm{d}, J 2.8,1 \mathrm{H}$, $\mathrm{ArH}), 6.88(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and 2.8 , ArH$), 7.12(1 \mathrm{H}, \mathrm{d}, J 8.8$, $\mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{ArH}), 7.45(1 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{ArH}), 7.55$ $(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$, and $8.06(1 \mathrm{H}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 47.3,56.0,110.3,115.4,116.0,119.8,120.4,124.4,127.4$, $127.9,130.4,133.2,146.5$, and 157.4.
2-[(2-Azido-5-methoxy)phenylmethyl]-2H-benzotriazole 7b. Mp $102-104^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, 56.2 ; H, 4.3; $\mathrm{N}, 29.9$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 56.0 ; \mathrm{H}, 4.3 ; \mathrm{N}, 30.0 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3048,2936,2824,2112,1603,1556,1489$, $1454,1424,1281,1236,1161,1030,841,746,624$, and 521 ; ${ }^{1} \mathrm{H}$ NMR $\delta 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.79(1 \mathrm{H}$, d, $J 2.9, \mathrm{ArH}), 6.90(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $2.9, \mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{d}$, J 8.8, ArH), $7.37(2 \mathrm{H}$, dd, $J 6.6$ and 3.1, ArH), and 7.88 (2 H , dd, $J 6.6$ and 3.1, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 55.6,56.0,115.9,116.2$, 118.6, 119.8, 126.9, 127.1, 131.0, 144.9, and 157.3.

1-[(2-Azido-3-methyl)phenylmethyl]-1H-benzotriazole $6 \mathbf{c} . \mathrm{Mp}$ $54-56^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, 63.55; H, 4.5; N, 31.9. Calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6}$: C, 63.6; $\mathrm{H}, 4.6 ; \mathrm{N}, 31.8 \%$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3048,2936,2104,1606,1585,1454,1427,1340$, 1286, 1220, 1153, 1084, 774, 740, and 520; ${ }^{1} \mathrm{H}$ NMR $\delta 2.42$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArH}), 6.99$ $(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArH}), 7.10(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{dt}, J$ 1.3 and $6.7, \mathrm{ArH}), 7.37-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.04(1 \mathrm{H}, \mathrm{d}, J$ 8.3, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 18.3,48.6,110.1,120.3,124.3,126.7$, $127.7,127.8,128.8,132.3,133.3,133.5,136.5$, and 146.5.

2-[(2-Azido-3-methyl)phenylmethyl]-2H-benzotriazole 7c. Viscous liquid (Found: C, 63.5; H, 4.5; N, 31.95. Calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6}$: C, 63.6; H, 4.6; N, 31.8\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3040$, 2948, 2110, 1607, 1585, 1454, 1420, 1342, 1286, 1221, 1150, 1084, 845, 746, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.99$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.06-7.11(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.15-7.19(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{dd}, J 6.6$ and $3.1, \mathrm{ArH})$, and $7.89(2 \mathrm{H}, \mathrm{dd}, J$ 6.6 and 3.1, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 18.5,56.9,118.6,126.7,126.8$, $128.5,128.8,132.5,133.6,137.2$, and 145.0.
1-[(2-Azido-5-bromo)phenylmethyl]-1H-benzotriazole 6d. Mp $84-86^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, $47.3 ; \mathrm{H}, 2.8 ; \mathrm{N}$, 25.45. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{6}$: C, 47.4; H, 2.8; N, 25.5\%); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056,2948,2110,1574,1482,1441,1302,1288$, 1217, 1154, 1073, 752, 740, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 5.77(2 \mathrm{H}, \mathrm{s}$, CH_{2}), 7.09 ($\left.1 \mathrm{H} . \mathrm{d}, J 8.5, \mathrm{ArH}\right), 7.27(1 \mathrm{H}, \mathrm{d}, J=2.1, \mathrm{ArH})$, 7.37-7.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.46-7.56 (3H, m, ArH), and 8.10 $(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 46.8,109.9,118.5,120.3$, $120.6,124.5,128.1,133.2,133.3,137.5$, and 146.5 .

2-[(2-Azido-5-bromo)phenylmethyl]-2H-benzotriazole 7d. Mp $94-96^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, 47.25 ; H, 2.9; N, 25.5. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{6}$: C, 47.4; $\mathrm{H}, 2.8 ; \mathrm{N}, 25.5 \%$); $v_{\text {max }}$
$(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056,2942,2110,1575,1480,1444,1302,1289$, 1218, 1156, 1074, 754, 739, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 5.85(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 7.09(1 \mathrm{H} . \mathrm{d}, J 8.6, \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, J=2.2, \mathrm{ArH})$, $7.42(2 \mathrm{H}$, dd, 6.6 and 3.1, ArH$), 7.50(1 \mathrm{H}, \mathrm{dd}, 8.5$ and 2.2, $\mathrm{ArH})$, and $7.90\left(2 \mathrm{H}\right.$, dd, 6.6 and 3.1, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 55.1$, $118.3,118.6,120.3,127.1,127.9,133.5,133.7,138.0$, and 145.0.

1-[(2-Azido-4-chloro)phenylmethyl]-1H-benzotriazole 6e. Mp $72-74^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 54.9 ; H, 3.1; N, 29.4. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{6}$: C, 54.8; H, 3.2; N, 29.5\%); $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3048,2952,2112,1572,1480,1444,1302,1278$, 1210, 1160, 1074, 756, and 516; ${ }^{1} \mathrm{H}$ NMR $\delta 5.77(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 7.06(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.37-7.42(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.45-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.08(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\delta 46.8,110.0,118.9,120.5,124.5,124.8,125.9$, $128.0,131.4,133.2,135.9,139.6$, and 146.5.
2-[(2-Azido-4-chloro)phenylmethyl]-2H-benzotriazole 7e. Mp $80-82^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 54.8 ; H, 3.15; N, 29.3. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{6}$: C, $54.8 ; \mathrm{H}, 3.2 ; \mathrm{N}, 29.5 \%$); $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3048,2947,2112,1575,1489,1441,1302,1268$, $1211,1160,1084,756,642$, and $516 ;{ }^{1} \mathrm{H}$ NMR $\delta 5.85(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 7.10(1 \mathrm{H}$, dd, $J 8.2$ and $1.9, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{d}, J 1.9$, $\mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 7.41(2 \mathrm{H}, \mathrm{dd}, J 6.6$ and 3.1, $\mathrm{ArH})$, and $7.88(2 \mathrm{H}$, dd, $J 6.6$ and $3.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta$ $55.1,118.5,119.0,124.6,125.8,127.0,123.1,136.2,140.1$, and 145.0.

1-[(2-Azido-5-chloro)phenylmethyl]-1H-benzotriazole $6 \boldsymbol{f} . \mathrm{Mp}$ $97-99^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 54.7 ; H, 3.2; N, 29.6. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{6}$: C, $54.8 ; \mathrm{H}, 3.2 ; \mathrm{N}, 29.5 \%$); $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3052,2952,2829,2110,1576,1442,1306,1281$, 1224, 1156, 1077, 904, 742, and 520; ${ }^{1} \mathrm{H}$ NMR $\delta 5.77(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.15(1 \mathrm{H}$, dd, $J 8.6$ and $2.7, \mathrm{ArH})$, 7.32-7.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.47-7.54 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), and 8.09 $(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 46.9,109.9,119.9,120.6$, $124.5,128.0,128.1,130.2,130.4,131.1,133.2,136.9$, and 146.5 .

2-[(2-Azido-5-chloro)phenylmethyl]-2H-benzotriazole $7 f . \mathrm{Mp}$ $113-115^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 54.8; H, 3.1; $\mathrm{N}, 29.65$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{6}: \mathrm{C}, 54.8 ; \mathrm{H}, 3.2 ; \mathrm{N}, 29.5 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3054,2952$, 2828, 2112, 1580, 1444, 1307, $1281,1224,1156,1078,905,746$, and $516 ;{ }^{1} \mathrm{H}$ NMR $\delta 5.82$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.06(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}), 7.19(1 \mathrm{H}, \mathrm{d}, J 2.4$, $\mathrm{ArH}), 7.28(1 \mathrm{H}$, dd, $J 8.6$ and $2.4, \mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{dd}, J 6.6$ and 3.1 , ArH), and $7.87(2 \mathrm{H}$, dd, J 6.6 and $3.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR δ 55.1, 118.6, 119.9, 127.0, 127.7, 130.4, 130.7, 130.8, 137.3, and 145.0.

1-[(2-Azido-5-nitro)phenylmethyl]-1H-benzotriazole $6 \boldsymbol{g} . \mathrm{Mp}$ $144-146^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 52.9; H, 3.1; N, 10.7. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{7} \mathrm{O}_{2}$: C, $52.85 ; \mathrm{H}, 3.1 ; \mathrm{N}, 10.8 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3064,3024,2112,1603,1574,1504,1476$, 1331, 1281, 1214, 1148, 1081, 824, 768, 736, and 526; ${ }^{1} \mathrm{H}$ NMR $\delta 5.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.34(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.37-7.43$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.48-7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.03(1 \mathrm{H}, \mathrm{d}, J 2.5$, $\mathrm{ArH}), 8.09(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$, and $8.24(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and 2.6, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 46.9,109.6,119.2,120.7,124.7,125.8$, 126.0, 127.5, 128.3, 133.2, 145.0, 145.1, and 146.4.

2-[(2-Azido-5-nitro)phenylmethyl]-2H-benzotriazole $7 \mathrm{~g} . \mathrm{Mp}$ $171-173^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 53.0; H, 3.2; N, 10.7. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{7} \mathrm{O}_{2}$: C, $52.85 ; \mathrm{H}, 3.1 ; \mathrm{N}, 10.8 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3058,3026,2112,1605,1578,1506,1476$, $1334,1280,1148,1080,824,768,624$, and $526 ;{ }^{1} \mathrm{H}$ NMR δ
$5.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.34(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.42(2 \mathrm{H}, \mathrm{dd}, J$ 6.6 and $3.1, \mathrm{ArH}), 7.88(2 \mathrm{H}, \mathrm{dd}, 6.6$ and $3.1, \mathrm{ArH}), 8.17(1 \mathrm{H}$, $\mathrm{d}, J 2.5, \mathrm{ArH})$, and $8.28(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $2.5, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 55.0,118.6,119.2,125.9,126.7,127.1,127.2,144.9$, 145.1, and 145.4.

1-(4-Azidophenylmethyl)-1H-benzotriazole 6h. $\mathrm{Mp} 90-92^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 62.5; H, 4.0; N, 33.7. Calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6}$: C, 62.4; H, 4.0; $\mathrm{N}, 33.6 \%$); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3048,2944,2112,1600,1571,1494,1438,1297,1214$, 1147, 1081, 822, 776, 758, 740, and 524; ${ }^{1} \mathrm{H}$ NMR $\delta 5.83$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.00(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.29(2 \mathrm{H}, \mathrm{d}, J 8.5$, $\mathrm{ArH}), 7.33-7.46(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.08(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\delta 52.0,109.9,120.0,120.6,124.4,127.9,129.6$, 131.8, 133.1, 140.8, and 146.8.

2-(4-Azidophenylmethyl)-2H-benzotriazole 7h. Mp 108$110^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 62.45; H, 3.9; N, 33.7. Calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6}$: C, 62.4; H, 4.0; N, 33.6%); $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3048,2924,2110,1601,1573,1495,1438,1280$, $1210,1147,1081,822,774,740$, and $518 ;{ }^{1} \mathrm{H}$ NMR $\delta 5.87$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.01(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{d}, J 8.4$, $\mathrm{ArH}), 7.38(2 \mathrm{H}$, dd, $J 6.6$ and $3.1, \mathrm{ArH})$, and $7.89(2 \mathrm{H}, \mathrm{dd}, J$ 6.6 and $3.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 58.4,111.4,120.2,124.5$, $126.6,130.3,138.7$, and 146.1.

Reaction of 5 -chlorobenzotriazole (1b) with 2 -azidobenzyl bromide (5a). In accordance with the aforementioned general procedure, $\mathbf{5 a}(1770 \mathrm{mg}, 8.34 \mathrm{mmol})$ was added to a mixture of $\mathbf{1 b}(1220 \mathrm{mg}, 7.94 \mathrm{mmol})$ and $\mathrm{Na}(183 \mathrm{mg}, 8.34$ $\mathrm{mmol})$ in absolute ethanol $(50 \mathrm{~mL})$. The mixture was stirred for 12 h at room temperature. After removal of the solvent in vacuo, the residue was chromatographed on a silica gel $(3.0 \times$ $15 \mathrm{~cm}^{2}$) using a mixture of EtOAc and n-hexane (1:5) to give 2-(2-azidophenylmethyl)-2H-(5-chlorobenzotriazole) (7i) (407 $\mathrm{mg}, 18 \%)$, a mixture of 1-(2-azidophenylmethyl)-6-chloro- 1 H benzotriazole ($\mathbf{6 i}$) and 1-(2-azidophenylmethyl)-5-chloro- 1 H benzotriazole ($\mathbf{6 i} \mathbf{i}^{\prime}$) ($995 \mathrm{mg}, 44 \%$) and unreacted $\mathbf{1 b}$. The mixture of $\mathbf{6 i}$ and $\mathbf{6 \mathbf { i } ^ { \prime }}$ (1:1 based on the ${ }^{1} \mathrm{H}$ NMR signal of CH_{2}) was separated by the repeated recrystallization using a mixture of EtOAc and n-hexane (1:15) to give $\mathbf{6 i}$ and $\mathbf{6} \mathbf{i}^{\prime}$ as solids.

6i. Mp $77-79^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 54.7; $\mathrm{H}, 3.1$; $\mathrm{N}, 29.5$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{6}$: C , $54.8 ; \mathrm{H}, 3.2$; N , $29.5 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056,2952$, 2848, 2112, 1575, 1481, $1440,1302,1278,1206,1155,1074,740$, and $518 ;{ }^{1} \mathrm{H}$ NMR δ $5.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.07-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.27(1 \mathrm{H}, \mathrm{d}, J 8.0$, $\mathrm{ArH}), 7.33(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and $1.5, \mathrm{ArH}), 7.40(1 \mathrm{H}, \mathrm{td}, J 7.5$ and $2.0, \mathrm{ArH}), 7.53(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{ArH})$, and $7.99(1 \mathrm{H}, \mathrm{d}, J$ 8.8, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 47.6,110.1,118.8,121.4,125.6,125.7$, $125.8,130.4,130.6,133.9,134.3,138.4$, and 145.1.

6i'. Mp 116-118 ${ }^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 54.9; H, 3.0; N, 29.4. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{6}$: C, 54.8; $\mathrm{H}, 3.2$; N, 29.5%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3048,2954,2110,1572,1488,1444$, 1302, 1278, 1201, 1160, 1074, 756, 642, and 516; ${ }^{1} \mathrm{H}$ NMR δ $5.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.10-7.18(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22(1 \mathrm{H}, \mathrm{d}, J 7.9$, $\mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{ArH}), 7.46$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and $8.04(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 47.7$, $111.3,118.8,119.7,125.7,128.8,130.3,130.4,130.5,130.6$, $131.9,138.4$, and 147.1.

7i. Mp 102- $104^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 54.9; $\mathrm{H}, 3.1$; $\mathrm{N}, 29.3$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{6}$: C, 54.8; H, 3.2; N, 29.5%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3050,2952,2112,1574,1480,1441$, 1308, 1280, 1200, 1157, 1065, 756, 648, and 520; ${ }^{1} \mathrm{H}$ NMR δ $5.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.14(1 \mathrm{H}, \mathrm{td}, J 7.7$ and $1.5, \mathrm{ArH}), 7.34(1 \mathrm{H}$,
dd, $J 9.1$ and $1.9, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $1.5, \mathrm{ArH})$, $7.82(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{ArH})$, and $7.88(1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 55.9,117.6,118.8,119.8,125.5,125.7,128.4,130.7$, $131.0,132.7,138.9,143.4$, and 145.2.

General procedure for the reactions of 6 with alkyl halides in the presence of \boldsymbol{n}-BuLi. To a solution of $\mathbf{6}$ (1.80 $\mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ were added n - $\mathrm{BuLi}(2.5 M$ in n-hexane, 4.50 mmol) and alkyl halide (4.50 mmol), which was stirred for 1 h . The mixture was additionally stirred for 2 h at room temperature, quenched by addition of water (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined extract was dried over MgSO_{4}. Evaporation of the solvent in vacuo gave a residue, which was chromatographed on a silica gel $\left(2.5 \times 13 \mathrm{~cm}^{2}\right)$ using a mixture of EtOAc and n-hexane (1:6) to give 2-(N, N-dialkylamino)-3-(benzotriazol-1-yl)- 2 H indazoles 8, 3-(benzotriazol-1-yl)-2 H -indazole 9, 2-[(benzotria-zol-1-yl)methyl]arylamines 10, 2-[(benzotriazol-1-yl)(alkyl)methyl]arylamines 11, and unreacted $\mathbf{6}$.

Reaction of 6 a with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}(350 \mathrm{mg}$, $1.40 \mathrm{mmol})$, allyl bromide ($423 \mathrm{mg}, 3.50 \mathrm{mmol}$), and $n-\mathrm{BuLi}$ $(3.50 \mathrm{mmol})$ was stirred. Chromatography of the reaction mixture gave 2-(N, N-diallylamino)-3-(benzotriazol-1-yl)- 2 H indazole (8a) ($176 \mathrm{mg}, 38 \%$), 3-(benzotriazol-1-yl)-2H-indazole (9a) (46 mg, 14\%), 2-[(benzotriazol-1-yl)methyl]phenylamine (10a) ($6 \mathrm{mg}, 2 \%$), 2-[1-(benzotriazol-1-yl)-3-butenyl]phenylamine (11a) ($70 \mathrm{mg}, 19 \%$), and unreacted $\mathbf{6 a}(11 \mathrm{mg}$, 3%).

8a. Mp 89-91 ${ }^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, 68.95; H, 5.5; $\mathrm{N}, 25.4$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{6}$: C, 69.1; H, 5.5; $\mathrm{N}, 25.4 \%$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056,2912,2848,1630,1601,1555,1523,1440$, $1398,1371,1280,1227,1200,1166,1033,990,924,836$, 740, and 516; ${ }^{1} \mathrm{H}$ NMR $\delta 3.86\left(4 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH}_{2}\right), 4.96(2 \mathrm{H}$, $\left.J 17.4,=\mathrm{CH}_{2}\right), 5.01\left(2 \mathrm{H}, \mathrm{d}, J 24.7,=\mathrm{CH}_{2}\right), 5.49-5.65(2 \mathrm{H}$, $\mathrm{m},=\mathrm{CH}), 7.08-7.16(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.33-7.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.43-7.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.79(1 \mathrm{H}, \mathrm{d}$, J 8.9, ArH), and $8.20(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 60.8$, $110.4,115.7,118.7,118.8,120.5,120.7,124.3,125.0,127.4$, 129.1, 132.8, 135.1, 145.4, and 145.7.

9a. Mp 219-220 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-n\right.$-hexane) (Found: $\mathrm{C}, 66.3$; H , 3.8; N, 29.8. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5}$: C, $66.4 ; \mathrm{H}, 3.9 ; \mathrm{N}, 29.8 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3136,3040,2928,2880,1609,1523,1488$, $1436,1385,1342,1273,1244,1166,1094,1003,984,918$, 892, and $737 ;{ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{DMSO}) 7.34(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH})$, 7.52-7.62 (2H, m, ArH), 7.66-7.79 (2H, m, ArH), $8.25(2 \mathrm{H}, \mathrm{d}$, J 8.3, ArH), $8.37(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$, and $13.6(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{DMSO}) 111.8,113.7,115.0,120.5,121.8,122.9$, $126.2,128.8,130.0,132.1,140.3,142.1$, and 145.9.

10a. Mp $111-113^{\circ} \mathrm{C}$ (from EtOAc-n-hexane) (Found: C, 69.5; H, 5.3; N, 25.05. Calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4}$: C, 69.6; H, 5.4; N, 25.0%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3352,3232,3056,2912,1627,1601$, 1577, 1488, 1446, 1299, 1262, 1219, 1152, 1006, 740, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 4.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.67$ $(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}), 6.77(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{t}, J$ $7.8, \mathrm{ArH}), 7.29-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{ArH})$, $7.53(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$, and $8.04(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 50.6,110.4,117.2,118.7,118.9,120.4,124.5,126.3$, 128.0, 130.7, 131.1, 133.1, and 146.5.

11a. Viscous liquid (Found: C, 72.6; H, 6.0; N, 21.35. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4}$: C, $72.7 ; \mathrm{H}, 6.1 ; \mathrm{N}, 21.2 \%$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ 3432, 3344, 3224, 3056, 2920, 1624, 1486, 1446, 1304, 1265,

1228, 1153, 996, 918, 740, and 520; ${ }^{1} \mathrm{H}$ NMR δ 3.24-3.31 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.40-3.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$, $5.02\left(1 \mathrm{H}, \mathrm{d}, J 14.3,=\mathrm{CH}_{2}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 20.6,=\mathrm{CH}_{2}\right)$, $5.68-5.82(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.09(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $6.5, \mathrm{CH})$, $6.65(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 6.84(1 \mathrm{H}, \mathrm{t}, J=7.6, \mathrm{ArH}), 7.14(1 \mathrm{H}$, $\mathrm{dt}, J 1.4$ and $7.7, \mathrm{ArH}), 7.28-7.39(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41-7.48$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.05(1 \mathrm{H}, \mathrm{d}, J=7.4, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR δ $36.5,60.8,110.8,117.6,118.8,119.2,120.5,124.4,127.7$, 128.0, 130.1, 132.6, 133.6, 145.8, and 147.0.

Reaction of 6a with ethyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}(500 \mathrm{mg}$, 2.00 mmol), ethyl bromide ($545 \mathrm{mg}, 5.00 \mathrm{mmol}$), and $n-\mathrm{BuLi}$ $(5.00 \mathrm{mmol})$ was stirred. Chromatography of the reaction mixture gave 2 -(N, N-diethylamino)-3-(benzotriazol-1-yl)- 2 H -indazole ($\mathbf{8 b}$) ($153 \mathrm{mg}, 25 \%$), 9a ($66 \mathrm{mg}, 13 \%$), and 10a (94 mg , 21%).

8 b. Viscous liquid (Found: C, 66.7; H, 6.1; N, 27.25. Calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{6}: \mathrm{C}, 66.65 ; \mathrm{H}, 5.9 ; \mathrm{N}, 27.4 \%$); $v_{\max }\left(\right.$ film) $/ \mathrm{cm}^{-1}$ 3048, 2960, 2856, 1606, 1526, 1444, 1371, 1275, 1206, 1081, $1038,1000,966,938$, and $739 ;{ }^{1} \mathrm{H}$ NMR $\delta 0.83(6 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{3}\right), 3.27\left(4 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CH}_{2}\right), 7.15-7.21(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30$ $(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.42-7.56(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.83(1 \mathrm{H}, \mathrm{d}, J$ 8.9, ArH), and $8.23(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{DMSO})$ $12.6,52.7,110.1,115.9,118.6,118,8,120.8,124.3,124.9$, $127.5,129.2,135.3,145.6$, and 145.7.

Reaction of 6a with 4-bromo-1-butene. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}$ (400 $\mathrm{mg}, 1.60 \mathrm{mmol}$), 4-bromo-1-butene ($540 \mathrm{mg}, 4.00 \mathrm{mmol}$), and $n-\mathrm{BuLi}(4.00 \mathrm{mmol})$ was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and 2 h at room temperature. Chromatography of the reaction mixture gave 9a ($31 \mathrm{mg}, 16 \%$), 10a ($72 \mathrm{mg}, 20 \%$), 2-[1-(benzotriazol-$1-y \mathrm{l})$-4-pentenyl]phenylamine (11c) $(18 \mathrm{mg}, 4 \%)$, 1-[1-(2-azi-dophenyl)-4-pentenyl]-1 H -benzotriazole (12c) $(88 \mathrm{mg}, 18 \%$), [2-\{1-(benzotriazol-1-yl)-4-pentenyl\}phenyl]butylamine (17) ($14 \mathrm{mg}, 3 \%$).

11c. Viscous liquid (Found: C, 73.6; H, 6.4; N, 19.9. Calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4}: \mathrm{C}, 73.35 ; \mathrm{H}, 6.5 ; \mathrm{N}, 20.1 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3434, 3226, 3048, 2924, 1604, 1487, 1441, 1308, 1272, 1220, 1154, 996, 740, and 520; ${ }^{1} \mathrm{H}$ NMR $\delta 1.97-2.21(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.38-1.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.89-3.01(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.95\left(1 \mathrm{H}, \mathrm{d}, J 17.1,=\mathrm{CH}_{2}\right), 5.03(1 \mathrm{H}, \mathrm{d}, J$ $\left.10.1,=\mathrm{CH}_{2}\right), 5.76-5.89(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.20(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $5.7, \mathrm{CH}), 7.10(1 \mathrm{H}, \mathrm{dt}, J 1.0$ and $7.3, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{dd}$, $J 8.0$ and $1.0, \mathrm{ArH}), 7.25-7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.51(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.57(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$, and $8.07(1 \mathrm{H}, \mathrm{d}, J 8.3$, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 30.9,34.3,56.1,110.2,116.5,118.4,120.3$, $124.4,125.9,127.6,128.6,129.9,131.1,133.7,137.1,137.4$, and 146.2.

12c. Viscous liquid (Found: C, 67.2; H, 5.2; N, 27.4. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{6}: \mathrm{C}, 67.1 ; \mathrm{H}, 5.3 ; \mathrm{N}, 27.6 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3056, 2928, 2848, 2112, 1675, 1632, 1601, 1483, 1443, 1264, $1211,1153,1070,993,910,743,696$, and $523 ;{ }^{1} \mathrm{H}$ NMR δ 2.03-2.15 $\left(2 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), \quad 2.50-2.62 \quad(1 \mathrm{H}, \quad \mathrm{m}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.88-3.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 4.98(1 \mathrm{H}, \mathrm{d}, J$ $\left.17.0,=\mathrm{CH}_{2}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 10.2,=\mathrm{CH}_{2}\right), 5.75-5.91(2 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}$ and CH$), 7.25-7.40(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.07(1 \mathrm{H}, \mathrm{d}, J$ 8.0, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 30.9,34.3,63.0,110.2,116.7,120.4$, $124.3,127.3,127.6,128.7,129.3,133.3,137.2,139.6$, and 146.6.
17. Viscous liquid (Found: C, 75.5; H, 7.65; N, 16.8. Calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4}: \mathrm{C}, 75.4 ; \mathrm{H}, 7.8 ; \mathrm{N}, 16.75 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3264, 3056, 2936, 2856, 1630, 1603, 1475, 1440, 1392, 1198,

993, 910, 740, and 518; ${ }^{1} \mathrm{H}$ NMR $\delta 1.03\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right)$, 1.45-1.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.69-1.72 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.01-2.14 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$), 2.48$2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.91-3.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$, $3.76\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCH}_{2}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 17.7,=\mathrm{CH}_{2}\right), 4.98$ $\left(1 \mathrm{H}, \mathrm{d}, J 10.5,=\mathrm{CH}_{2}\right), 5.73-5.90(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}$ and CH$)$, $6.82(1 \mathrm{H}, \mathrm{t}, J=7.2, \mathrm{NH}), 7.13(1 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{ArH}), 7.23(1 \mathrm{H}$, $\mathrm{t}, J 7.4, \mathrm{ArH}), 7.29-7.51(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.06(1 \mathrm{H}, \mathrm{d}, J 7.7$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.3,20.9,31.1,33.0,34.5,44.6,56.3$, 110.6, 116.1, 120.1, 124.3, 127.0, 127.2, 127.3, 128.0, 129.0, $129.4,133.8,137.7$, and 146.3 .
Reaction of 6 a with 4 -iodo-1-butene. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}$ (350 $\mathrm{mg}, 1.40 \mathrm{mmol}$), 4-iodo-1-butene ($644 \mathrm{mg}, 3.50 \mathrm{mmol}$), and $n-$ BuLi (3.50 mmol) was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and 2 h at room temperature. Chromatography of the reaction mixture gave 9a ($68 \mathrm{mg}, 21 \%$), 10a ($44 \mathrm{mg}, 14 \%$), 12c ($55 \mathrm{mg}, 13 \%$), and unreacted $\mathbf{6 a}$ ($14 \mathrm{mg}, 4 \%$).

Reaction of 6 a with benzyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}$ (320 $\mathrm{mg}, 1.28 \mathrm{mmol}$), benzyl bromide ($547 \mathrm{mg}, 3.20 \mathrm{mmol}$), and n BuLi (3.20 mmol) was stirred. Chromatography of the reaction mixture gave 2-(N, N-dibenzylamino)-3-(benzotriazol-1-yl)- 2 H indazole ($\mathbf{8 d}$) ($171 \mathrm{mg}, 31 \%$), 9a ($48 \mathrm{mg}, 16 \%$), 10a (14 mg , 5%), 2-[\{1-(benzotriazol-1-yl)-2-phenyl\}ethyl]phenylamine (11d) ($24 \mathrm{mg}, 6 \%$), and unreacted $\mathbf{6 a}(13 \mathrm{mg}, 4 \%)$.
$8 d . \mathrm{Mp} 115-117^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, $75.25 ; \mathrm{H}, 5.0 ; \mathrm{N}, 19.6$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{6}$: C, 75.3; H, 5.15; $\mathrm{N}, 19.5 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3040,2912,2848,1628,1595$, 1555, 1524, 1486, 1446, 1396, 1372, 1278, 1227, 1198, 1166, 1030, 904, 739, 694, and 520; ${ }^{1} \mathrm{H}$ NMR $\delta 4.49\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, 6.52 ($1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}$), 6.99-7.21 (11H, m, ArH), 7.29-7.36 $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.89(1 \mathrm{H}, \mathrm{d}, J 8.9$, $\mathrm{ArH}), 8.22(1 \mathrm{H}, \mathrm{d}, J 8.3, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 61.5,110.4$, $114.9,118.7,118.8,120.3,124.1,124.8,127.5,128.2,128.7$, $129.6,134.5,136.2,145.4$, and 145.5 .
11d. Viscous liquid (mixed with 10a); ${ }^{1} \mathrm{H}$ NMR $\delta 4.28$ (2 H , s, $\left.\mathrm{NH}_{2}\right), 4.50\left(2 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{CH}_{2}\right), 6.18(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 4.9 , $\mathrm{CH}), 6.53(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 7.09-7.46$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.06 $(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$, and $8.43(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$.

Reaction of $\mathbf{6 a}$ with \boldsymbol{n}-butyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}$ (350 $\mathrm{mg}, 1.40 \mathrm{mmol}$), n-butyl bromide ($480 \mathrm{mg}, 3.50 \mathrm{mmol}$), and n-BuLi $(3.50 \mathrm{mmol})$ was stirred. Chromatography of the reaction mixture gave 9a ($59 \mathrm{mg}, 18 \%$), 2-[1-(benzotriazol-1yl)pentyl]phenylamine (11e) ($51 \mathrm{mg}, 13 \%$), [2-\{1-(benzotria-zol-1-yl)pentyl \}phenyl]butylamine (18) ($50 \mathrm{mg}, 11 \%$).

11e. Viscous liquid (Found: C, 72.6; H, 7.3; N, 19.9. Calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4}: \mathrm{C}, 72.8 ; \mathrm{H}, 7.2 ; \mathrm{N}, 20.0 \%$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ 3048, 2928, 2856, 1600, 1577, 1483, 1448, 1368, 1264, 1214, $1155,774,739,694$, and $518 ;{ }^{1} \mathrm{H}$ NMR $\delta 0.89(3 \mathrm{H}, \mathrm{t}, J 7.2$, CH_{3}), 1.24-1.37 (4H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.45-2.56(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2}\right), 2.74-2.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.80$ $(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and $6.5, \mathrm{CH}), 7.29-7.40(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and 8.07 (d, J 8.0, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 14.3,22.7,29.2,34.9,64.2$, $110.3,120.4,124.3,126.3,127.3,127.5,128.6,128.8,129.3$, 133.2, 139.8, and 146.6 .
18. Viscous liquid (Found: C, 67.2; H, 5.2; N, 27.4. Calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4}: \mathrm{C}, 67.1 ; \mathrm{H}, 5.3 ; \mathrm{N}, 27.6 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 3385, 3056, 2928, 2850, 1601, 1578, 1473, 1446, 1392, 1193, 1153, 1086, 774, 740, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J 6.8$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
1.27-1.44 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.45-1.56 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.69-180\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 2.40-2.51 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.77-2.90 $(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.76\left(2 \mathrm{H}, \mathrm{dt}, J 3.4\right.$ and $\left.7.0, \mathrm{NCH}_{2}\right)$, $6.72(1 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{NH}), 7.12(1 \mathrm{H}, \mathrm{dt}, J 1.1$ and $7.4, \mathrm{ArH}), 7.24$ $(1 \mathrm{H}, \mathrm{dt}, J 1.4$ and $7.9, \mathrm{ArH}), 7.31-7.49(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.05(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.2,14.3,20.7,22.7$, $29.2,32.1,35.1,44.0,57.3,110.5,117.2,120.1,124.1,127.0$, 127.1, 127.3, 128.9, 133.8, and 146.3.

Reaction of 6 a with tert-butyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}$ $(350 \mathrm{mg}, 1.40 \mathrm{mmol})$, tert-butyl bromide $(480 \mathrm{mg}, 3.50$ $\mathrm{mmol})$, and $n-\mathrm{BuLi}(3.50 \mathrm{mmol})$ was stirred. Chromatography of the reaction mixture gave $9 \mathrm{a}(69 \mathrm{mg}, 21 \%)$, 10a $(60 \mathrm{mg}$, 14%), and unreacted $\mathbf{6 a}(109 \mathrm{mg}, 31 \%)$.
Reaction of $6 \mathbf{b}$ with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 b}(400 \mathrm{mg}$, 1.43 mmol), allyl bromide ($432 \mathrm{mg}, 3.58 \mathrm{mmol}$), and $n-\mathrm{BuLi}$ (3.58 mmol) was stirred. Chromatography of the reaction mixture gave 2-(N, N-dibenzylamino)-3-(benzotriazol-1-yl)-5-methoxy- 2 H -indazole ($\mathbf{8 g}$) ($124 \mathrm{mg}, 24 \%$), 3-(benzotriazol-1-yl)-5-methoxy-2H-indazole (9 g) ($72 \mathrm{mg}, 19 \%$), [2-(benzotria-zol-1-yl)methyl-4-methoxy]phenylamine ($\mathbf{1 0 g}$) ($29 \mathrm{mg} .8 \%$), [2-\{1-(benzotriazol-1-yl)-3-butenyl\}-4-methoxy]phenylamine (11g) ($13 \mathrm{mg}, 3 \%$), and unreacted $\mathbf{6 b}(12 \mathrm{mg}, 3 \%)$.
$8 g . \mathrm{Mp} 151-153^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, 66.7; H, 5.5; $\mathrm{N}, 23.3$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 66.65 ; \mathrm{H}, 5.6$; $\mathrm{N}, 23.3 \%) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3064,2936,2848,1638,1600$, 1558, 1499, 1446, 1278, 1212, 1036, 926, 809, 742, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(4 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{CH}_{2}\right), 4.99$ $\left(2 \mathrm{H}, \mathrm{d}, J 10.1,=\mathrm{CH}_{2}\right), 5.04\left(2 \mathrm{H}, \mathrm{d}, J 17.2,=\mathrm{CH}_{2}\right), 5.47-5.62$ $(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.43(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{dd}, J 9.4$, $2.4, \mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{ArH}), 7.46-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.69(1 \mathrm{H}, \mathrm{d}, J 9.4, \mathrm{ArH})$, and $8.23(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 55.8,60.8,110.5,116.0,120.3,120.4,120.8,122.7$, $124.9,126.3,128.9,132.9,135.2,141.9$, and 145.7 .

Crystal data for $8 g . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}, M=360.42$, triclinic, $a=$ 8.009(3), $b=8.019(2), c=14.760(8) \AA, \alpha=81.91(5), \beta=$ 82.16(4), $\gamma=96.01(3)^{\circ}, U=928.5(7) \AA^{3}, T=293(2) \mathrm{K}$, space group $P-1, Z=2, \mu\left(\mathrm{Mo}_{\alpha}\right)=0.085 \mathrm{~mm}^{-1}, \lambda=$ $0.71070 \AA, 3266$ reflections measured, 3265 unique ($R_{\text {int }}=$ 0.0029) which were used in all calculations. The final $w R\left(F^{2}\right)$ was 0.1110. CCDC 212914.

9g. Mp 234-236 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C, 63.4; H, 4.0; $\mathrm{N}, 26.3$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 63.4 ; \mathrm{H}, 4.2$; $\mathrm{N}, 26.4 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3130,3048,2928,1632,1609$, 1525, 1478, 1431, 1386, 1344, 1273, 1167, 1094, 984, 918, 892, and $740 ;{ }^{1} \mathrm{H}$ NMR δ (DMSO) $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.19$ $(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $2.2, \mathrm{ArH}), 7.54-7.63(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.73$ $(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 8.24(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 8.32(1 \mathrm{H}, \mathrm{d}, J$ 8.3, ArH), and $13.5(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR δ (DMSO) 56.3, $100.0,113.0,113.7,115.2,120.4,121.2,126.1,129.9,132.1$, 138.0, 139.7, 145.8, and 155.9.
$\mathbf{1 0 g}$. Viscous liquid (mixed with 11g); ${ }^{1} \mathrm{H}$ NMR $\delta 3.65(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.65(1 \mathrm{H}, \mathrm{d}, J$ 2.9, ArH$), 6.84(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 7.31-7.58(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.08(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$.
$\mathbf{1 1 g}$. Viscous liquid (mixed with $\mathbf{1 0 g}$); ${ }^{1} \mathrm{H}$ NMR $\delta 3.20-3.29$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.36-3.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 11.7,=\mathrm{CH}_{2}\right), 5.11(1 \mathrm{H}, \mathrm{d}, J$ 19.1, $\left.=\mathrm{CH}_{2}\right), 5.61-5.77(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.10(1 \mathrm{H}, \mathrm{dd}, J 9.3$
and $6.1, \mathrm{CH}), 6.58(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.10-7.59(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{ArH})$, and $8.11(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH})$.

Reaction of 1-[(2-azido-3-methyl)phenylmethyl]benzotriazole (6c) with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 c}(350 \mathrm{mg}$, 1.32 mmol), allyl bromide ($399 \mathrm{mg}, 3.30 \mathrm{mmol}$), and $n-\mathrm{BuLi}$ (3.30 mmol) was stirred. Chromatography of the reaction mixture gave 2-(N,N-dibenzylamino)-3-(benzotriazol-1-yl)-7-methyl-2 H -indazole ($\mathbf{8 h}$) ($168 \mathrm{mg}, 34 \%$), 3-(benzotriazol-1-yl)7 -methyl-2 H -indazole ($\mathbf{9 h}$) ($43 \mathrm{mg}, 13 \%$), [2-(benzotriazol-1-yl)methyl-6-methyl]phenylamine (10h) ($32 \mathrm{mg}, 10 \%$), [2-\{1-(benzotriazol-1-yl)-3-butenyl\}-6-methyl]phenylamine (11h) (18 $\mathrm{mg}, 5 \%)$.

8h. Mp $123-125^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, 69.6; H, 5.9; $\mathrm{N}, 24.5$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{6}$: C, 69.75 ; H, 5.85 ; $\mathrm{N}, 24.4 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056,2904,2840,1627,1604$, 1547, 1505, 1443, 1371, 1280, 1233, 1168, 1038, 990, 924, 864, 747, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.89(4 \mathrm{H}, \mathrm{d}$, $\left.J 6.6, \mathrm{CH}_{2}\right), 4.97\left(2 \mathrm{H}, \mathrm{d}, J 10.1,=\mathrm{CH}_{2}\right), 5.05(2 \mathrm{H}, \mathrm{d}, J 17.1$, $\left.=\mathrm{CH}_{2}\right), 5.52-5.66(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 7.01-7.17(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.31(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}), 7.47-7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and 8.22 $(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 17.2,60.7,110.5,115.6$, $116.0,120.2,120.7,124.5,124.9,126.2,128.9,129.0,133.1$, 135.2, 145.6, and 145.7.

9h. Mp $210-212^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C, 67.6; H, 4.6; N, 28.0. Calc. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5}$: C, 67.5; H, 4.45; N, 28.1%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3144,3056,2928,1606,1516,1440$, 1344, 1270, 1246, 1176, 1153, 1097, 1035, 852, 779, 737, and 521; ${ }^{1} \mathrm{H}$ NMR δ (DMSO) $2.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.23(1 \mathrm{H}, \mathrm{t}, J$ $7.9, \mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{ArH}), 7.58(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH})$, $7.76(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH}), 8.05(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 8.25(1 \mathrm{H}, \mathrm{d}$, $J 8.3, \mathrm{ArH}), 8.35(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$, and $13.7(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR δ (DMSO) 17.4, 113.7, 114.9, 119.1, 120.5, 121.7, $123.2,126.1,128.4,130.0,132.1,140.5,142.2$, and 145.9 .

10h. Viscous liquid (mixed with 11h); ${ }^{1} \mathrm{H}$ NMR $\delta 2.14$ (3H, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.73(1 \mathrm{H}, \mathrm{t}, J$ $7.5, \mathrm{ArH}), 7.08(1 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{ArH}), 7.24-7.61(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.06(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$.

11h. Viscous liquid (mixed with 10h); ${ }^{1} \mathrm{H}$ NMR $\delta 2.19$ (3H, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 4.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.21-3.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.39-$ $3.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 11.3,=\mathrm{CH}_{2}\right), 5.11(1 \mathrm{H}, \mathrm{d}, J$ 18.7, $\left.=\mathrm{CH}_{2}\right), 5.65-5.79(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.10(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $6.5, \mathrm{CH}), 6.72(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{d}, J 7.6$, $\mathrm{ArH}), 7.18-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.05(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$.
Reaction of 1-[(2-azido-5-bromo)phenylmethyl]benzotriazole (6d) with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 d}(300 \mathrm{mg}, 0.91$ mmol), allyl bromide ($276 \mathrm{mg}, 2.28 \mathrm{mmol}$), and $n-\mathrm{BuLi}$ (2.28 mmol) was stirred. Chromatography of the reaction mixture gave 2-(N, N-dibenzylamino)-3-(benzotriazol- 1 -yl)-5-bromo- 2 H -indazole ($\mathbf{8 i}$) ($97 \mathrm{mg}, 26 \%$), 3-(benzotriazol-1-yl)-5-bromo- 2 H - indazole (9 i) ($40 \mathrm{mg}, 14 \%$), [2-(benzotriazol-1-yl) methyl-4-bromo]phenylamine (10i) ($19 \mathrm{mg}, 7 \%$), [2-\{1-(benzo-triazol-1-yl)-3-butenyl $\}$-4-bromo]phenylamine (11i) (12 mg , 4%), and unreacted $\mathbf{6 d}(6 \mathrm{mg}, 2 \%)$.

8i. Viscous liquid (Found: C, 55.6; H, 4.35, N, 20.0. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{6}$: $\mathrm{C}, 55.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 20.5 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 3064, 2936, 2856, 1632, 1603, 1582, 1558, 1516, 1444, 1384, 1278, 1196, 1092, 990, 924, 739, and 518; ${ }^{1} \mathrm{H}$ NMR $\delta 3.85$ $\left(4 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH}_{2}\right), 4.99\left(2 \mathrm{H}, \mathrm{d}, J 10.8,=\mathrm{CH}_{2}\right), 5.04(2 \mathrm{H}, \mathrm{d}$, J 17.7, $\left.=\mathrm{CH}_{2}\right), 5.50-5.65(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 7.27-7.35(2 \mathrm{H}, \mathrm{m}$,
$\mathrm{ArH}), 7.48(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.52$ ($1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH}$), 7.57 (1 H , $\mathrm{d}, J=8.8, \mathrm{ArH})$, and $8.23(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR δ $60.8,110.2,116.8,118.0,120.6,120.7,120.8,120.9,124.6$, 129.3, 131.3, 132.6, 135.0, 143.7, and 145.7.

9i. Mp $260-262^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C , 49.6; H, 2.6; N, 22.35. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrN}_{5}$: C, 49.7; $\mathrm{H}, 2.6$; $\mathrm{N}, 22.3 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3140,3056,2930,2889,1612$, 1541, 146, 1381, 1339, 1241, 1165, 1089, 984, 918, 892, 737, and 642; ${ }^{1} \mathrm{H}$ NMR δ (DMSO) $7.59(1 \mathrm{H}, \mathrm{t}, J 7.4$, ArH), 7.66$7.72(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.77(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 8.26(1 \mathrm{H}, \mathrm{d}, J$ $8.3, \mathrm{ArH}), 8.36(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 8.42(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and 13.8 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR δ (DMSO) 113.7, 114.0, 115.0, 116.3, 120.6, 124.0, 126.3, 130.2, 131.6, 131.9, 140.8, and 145.9.

10i. Viscous liquid (mixed with 11i); ${ }^{1} \mathrm{H}$ NMR $\delta 4.32(2 \mathrm{H}$, $\left.\mathrm{br}, \mathrm{NH}_{2}\right), 5.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.10-7.62(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and 8.11 ($1 \mathrm{H}, \mathrm{d}, J$ 8.3, ArH).

11i. Viscous liquid (mixed with 10i); ${ }^{1} \mathrm{H}$ NMR δ 3.21-3.30 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.35-3.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.25\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, $5.01\left(1 \mathrm{H}, \mathrm{d}, J 10.8,=\mathrm{CH}_{2}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J 18.2,=\mathrm{CH}_{2}\right)$, $5.65-5.81(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.60(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $6.0, \mathrm{CH})$, $7.10-7.62(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.17(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH})$.

Reaction of 1-[(2-azido-4-chloro)phenylmethyl]benzotriazole (6e) with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 e}(480 \mathrm{mg}, 1.69$ mmol), allyl bromide ($512 \mathrm{mg}, 4.23 \mathrm{mmol}$), and $n-\mathrm{BuLi}(4.23$ mmol) was stirred. Chromatography of the reaction mixture gave 2-(N, N-dibenzylamino)-3-(benzotriazol-1-yl)-6-chloro- 2 H indazole ($\mathbf{8 j}$) ($160 \mathrm{mg}, 26 \%$), 3-(benzotriazol-1-yl)-6-chloro2 H -indazole (9 j) ($73 \mathrm{mg}, 16 \%$), [2-(benzotriazol-1-yl)methyl-5-chloro]phenylamine ($\mathbf{1 0 j}$) ($22 \mathrm{mg}, 5 \%$), [2-\{1-(benzotriazol1 -yl)-3-butenyl\}-5-chloro]phenylamine ($\mathbf{1 1 j}$) ($30 \mathrm{mg}, 6 \%$), and unreacted $\mathbf{6 e}(10 \mathrm{mg}, 2 \%)$.
$8 j . \mathrm{Mp} 80-82^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C, 62.5 ; $\mathrm{H}, 4.6$; $\mathrm{N}, 23.2$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{6}$: C, $62.55 ; \mathrm{H}, 4.7$; N , 23.0%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3064,2908,2848,1630,1608,1518$, 1473, 1443, 1374, 1280, 1195, 1163, 1043, 992, 928, 851, 744 , and $520 ;{ }^{1} \mathrm{H}$ NMR $\delta 3.85\left(4 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH}_{2}\right), 4.98(2 \mathrm{H}$, d, $J 10.1,=\mathrm{CH}_{2}$), $5.04\left(2 \mathrm{H}, \mathrm{d}, J 17.1,=\mathrm{CH}_{2}\right), 5.48-5.62(2 \mathrm{H}$, $\mathrm{m},=\mathrm{CH}), 7.12(1 \mathrm{H}, \mathrm{dd}, J 8.9,1.7, \mathrm{ArH}), 7.22-7.31(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.48-7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.80(1 \mathrm{H}, \mathrm{d}, J 1.3, \mathrm{ArH})$, and $8.23(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 60.8,110.3,114.0$, $117.8,120.1,120.7,120.9,125.1,125.8,125.9,129.3,132.6$, 133.6, 135.0, 145.4, and 145.7.

9j. $\mathrm{Mp} \quad 172-174^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C , 57.8; H, 3.1; N, 26.1. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClN}_{5}$: C, $57.9 ; \mathrm{H}, 3.0$; N, 26.0%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3156,3052,2908,2850,1639,1608$, 1523, 1478, 1436, 1375, 1278, 1244, 1196, 1049, 984, 918, 852, 738, and 516; ${ }^{1} \mathrm{H}$ NMR δ (DMSO) $7.35(1 \mathrm{H}, \mathrm{d}, J=8.7$, $\mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH}), 7.75(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}), 7.79$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.25(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{ArH}), 8.28(1 \mathrm{H}, \mathrm{d}, J 6.3$, $\mathrm{ArH}), 8.36(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$, and $13.7(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR δ (DMSO) 111.3, 113.7, 120.5, 123.6, 123.7, 126.2, $126.3,130.2,131.9,133.8,142.3$, and 145.9

10j. Viscous liquid (mixed with 11j); ${ }^{1} \mathrm{H}$ NMR $\delta 4.27$ (2 H , $\left.\mathrm{s}, \mathrm{NH}_{2}\right), 5.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.06(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.21-7.42$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.48(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and $8.06(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH})$.
$\mathbf{1 1 j}$. Viscous liquid (mixed with $\mathbf{1 0 j}$); ${ }^{1} \mathrm{H}$ NMR δ 3.19-3.30 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.35-3.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$, $5.01\left(1 \mathrm{H}, \mathrm{d}, J 10.7,=\mathrm{CH}_{2}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, J 18.9,=\mathrm{CH}_{2}\right)$, $5.63-5.80(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.02(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and $6.6, \mathrm{CH})$, $6.64(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{ArH}), 6.78(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $2.0, \mathrm{ArH})$, $7.31-7.43(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.04(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH})$.

Reaction of 1-[(2-azido-5-chloro)phenylmethyl]benzotriazole (6f) with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 f}(350 \mathrm{mg}, 1.23$ mmol), allyl bromide ($377 \mathrm{mg}, 3.08 \mathrm{mmol}$), and $n-\mathrm{BuLi}(3.08$ mmol) was stirred. Chromatography of the reaction mixture gave 2-(N, N-dibenzylamino)-3-(benzotriazol-1-yl)-5-chloro-2Hindazole ($8 \mathbf{k}$) ($126 \mathrm{mg}, 28 \%$), 3-(benzotriazol-1-yl)-5-chloro2 H -indazole (9 k) ($56 \mathrm{mg}, 17 \%$), [2-(benzotriazol-1-yl)methyl-4-chloro]phenylamine ($\mathbf{1 0 k}$) $(6 \mathrm{mg}, 2 \%)$, [2-\{1-(benzotriazol-1-yl)-3-butenyl\}-4-chloro]phenylamine (11k) ($29 \mathrm{mg}, 8 \%$), and unreacted $\mathbf{6 f}(14 \mathrm{mg}, 4 \%)$.
$8 k . \mathrm{Mp} 102-104^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C, 62.6; H, 4.8; N, 22.9. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{6}$: C, 62.55; H, 4.7; $\mathrm{N}, 23.0 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3053,2910$, 2848, 1627, 1600 , 1520, 1445, 1380, 1284, 1159, 1045, 996, 924, 849, 742, and $521 ;{ }^{1} \mathrm{H}$ NMR $\delta 3.85\left(4 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH}_{2}\right), 4.99(2 \mathrm{H}, \mathrm{d}, J=$ $\left.12.7,=\mathrm{CH}_{2}\right), 5.04\left(2 \mathrm{H}, \mathrm{d}, J 18.0,=\mathrm{CH}_{2}\right), 5.48-5.63(2 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}), 7.27-7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.46-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.75$ $(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{ArH})$, and $8.23(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR δ $110.2,116.1,117.4,120.5,120.7,120.9,125.1,129.0,129.3$, 130.2, 132.6, 135.2, 143.7, and 145.7.

9 k. $\mathrm{Mp} 198-200^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C, 57.8; $\mathrm{H}, 2.9$; $\mathrm{N}, 26.0$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClN}_{5}$: C, $57.9 ; \mathrm{H}, 3.0 ; \mathrm{N}$, 26.0%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3144,3054,2918,2838,1630,1609$, 1523, 1450, 1385, 1340, 1278, 1167, 1039, 994, 928, 837, 737, and 516; ${ }^{1} \mathrm{H}$ NMR δ (DMSO) $7.55(1 \mathrm{H}, \mathrm{t}, J 2.6, \mathrm{ArH})$, $7.58(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{ArH}), 7.75(2 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{ArH}), 8.25(1 \mathrm{H}$, d, $J 5.7, \mathrm{ArH}), 8.26(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{ArH}), 8.36(1 \mathrm{H}, \mathrm{d}, J 8.3$, $\mathrm{ArH})$, and $13.8(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR δ (DMSO) 111.7, $113.5,121.0,123.7,123.8,126.5,126.6,130.1,132.0,133.9$, 142.5 , and 145.9.

10k. Viscous liquid (mixed with 11k); ${ }^{1} \mathrm{H}$ NMR $\delta 4.35$ (2 H , s, $\left.\mathrm{NH}_{2}\right), 5.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.61(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{d}, J$ 8.4, ArH), $7.28-7.54(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.12(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH})$.
$\mathbf{1 1 k}$. Viscous liquid (mixed with 10k); ${ }^{1} \mathrm{H}$ NMR $\delta 3.21-3.29$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.39-3.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$, $5.02\left(1 \mathrm{H}, \mathrm{d}, J 11.6,=\mathrm{CH}_{2}\right), 5.08\left(1 \mathrm{H}, \mathrm{d}, J 17.1,=\mathrm{CH}_{2}\right)$, $5.66-5.81(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.01(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $6.1, \mathrm{CH})$, 6.58 ($1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}$), 7.09 ($1 \mathrm{H}, \mathrm{d}, J 8.5$, ArH), $7.31-7.59$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.06(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH})$.
Reaction of 1-[(2-azido-5-nitro)phenylmethyl]benzotriazole (6 g) with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 g}(300 \mathrm{mg}$, 1.02 mmol), allyl bromide ($308 \mathrm{mg}, 2.55 \mathrm{mmol}$), and $n-\mathrm{BuLi}$ $(2.55 \mathrm{mmol})$ was stirred to give very complex mixtures, which were unidentifiable.

Reaction of 1-(4-azidophenylmethyl)benzotriazole (6h) with allyl bromide. In accordance with the aforementioned general procedure, $\mathbf{6} \mathbf{h}(500 \mathrm{mg}, 2.00 \mathrm{mmol})$ was treated with n-BuLi (4.00 mmol), followed by addition of allyl bromide ($484 \mathrm{mg}, 4.00 \mathrm{mmol}$). Chromatography of the reaction mixture gave 1-[\{(4-azidophenyl)(allyl) $\}$ methyl $]-1 H$-benzotriazole (19) ($23 \mathrm{mg}, 4 \%$), 4-[(benzotriazol-1-yl)methyl]phenylamine (20) ($202 \mathrm{mg}, 45 \%$), and unreacted $\mathbf{6 h}(140 \mathrm{mg}, 28 \%)$.
19. Viscous liquid (Found: C, 66.4; H, 4.8; N, 29.0. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4}$: C, $66.2 ; \mathrm{H}, 4.9 ; \mathrm{N}, 28.95 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 3056, 2920, 2848, 2112, 1683, 1595, 1500, 1443, 1276, 1224, $1155,1064,992,916,824,744$, and 529 ; ${ }^{1} \mathrm{H}$ NMR $\delta 3.17-$ $3.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.46-3.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.04(1 \mathrm{H}, \mathrm{d}, J$ $\left.10.2,=\mathrm{CH}_{2}\right), 5.13\left(\mathrm{~d}, J 18.4,=\mathrm{CH}_{2}\right), 5.65-5.77(1 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}), 5.83(1 \mathrm{H}, \mathrm{dd}, J 8.8,6.7, \mathrm{CH}), 7.00(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH})$, $7.34-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.07(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH})$.
20. $\mathrm{Mp} 128-130^{\circ} \mathrm{C}$ (from EtOAc- n-hexane) (Found: C, 69.7; H, 5.3; $\mathrm{N}, 25.1$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4}$: C, $69.6 ; \mathrm{H}, 5.4 ; \mathrm{N}$, 25.0%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3448,3336,3040,2920,1611,1507$, 1436, 1283, 1216, 1176, 1126, 1076, 830, 776, 736, and 518; ${ }^{1} \mathrm{H}$ NMR $\delta 3.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.61(2 \mathrm{H}, \mathrm{d}$, J 8.4, ArH$), 7.13(2 \mathrm{H}, \mathrm{d}, J 10.1, \mathrm{ArH}), 7.33-7.42(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.04(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 52.6,110.4$, 115.6, 120.3, 124.2, 124.6, 127.6, 129.5, 133.4, 146.7, and 147.2.

Reaction of $\mathbf{1 - (2 - a z i d o p h e n y l m e t h y l) - 6 - c h l o r o - 1 H - b e n z o - ~}$ triazole (6i) with allyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 i}(199 \mathrm{mg}, 0.70$ mmol), allyl bromide ($212 \mathrm{mg}, 1.75 \mathrm{mmol}$), and $n-\mathrm{BuLi}(1.75$ $\mathrm{mmol})$ was stirred. Chromatography of the reaction mixture gave 2-(N, N-diallylamino)-3-(6-chlorobenzotriazol-1-yl)-2 H -indazole (81) ($77 \mathrm{mg}, 30 \%$), 3-(6-chlorobenzotriazol-1-yl)-2H-indazole (91) ($23 \mathrm{mg}, 12 \%$), 2-[(6-chlorobenzotriazol-1-yl)methyl]phenylamine ($\mathbf{1 0 I}$) ($11 \mathrm{mg}, 6 \%$), and unreacted $\mathbf{6 i}(4 \mathrm{mg}, 2 \%)$.

8l. Viscous liquid (Found: C, 62.6; H, 4.6; N, 23.15. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{6}$: C, $62.55 ; \mathrm{H}, 4.7 ; \mathrm{N}, 23.0 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3056, 2906, 2865, 1631, 1608, 1518, 1473, 1444, 1374, 1280, 1166, 1043, 992, 928, 851, 744, and 522; ${ }^{1} \mathrm{H}$ NMR $\delta 3.87$ $\left(4 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CH}_{2}\right), 5.01\left(2 \mathrm{H}, \mathrm{d}, J 9.0,=\mathrm{CH}_{2}\right), 5.06(2 \mathrm{H}, \mathrm{d}, J$ $\left.15.9,=\mathrm{CH}_{2}\right), 5.49-5.64(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 7.22(1 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{ArH}), 7.29-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.82$ $(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH})$, and $8.15(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR δ $60.9,110.5,115.7,118.5,118.9,120.8,121.7,124.6,126.2$, 127.6, 132.7, 135.7, 144.3 and 145.4.
91. $\mathrm{Mp} 215-217^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C , 57.95; H, 3.1; N, 26.0. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClN}_{5}$: C, $57.9 ; \mathrm{H}, 3.0$; $\mathrm{N}, 26.0 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3124,3058,2920,2846,1627$, $1600,1523,1456,1385,1340,1278,1175,1039,994,928,837$, 737, 694, and 516; ${ }^{1} \mathrm{H}$ NMR δ (DMSO) $7.35(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $6.6, \mathrm{ArH}), 7.56(1 \mathrm{H}, \mathrm{dt}, J 1.0$ and $6.9, \mathrm{ArH}), 7.61(1 \mathrm{H}, \mathrm{dd}, J 8.9$ and $1.9, \mathrm{ArH}), 7.70(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 8.24(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$, $8.29(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 8.39(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{ArH})$, and $13.6(\mathrm{~s}, 1 \mathrm{H}$, NH); ${ }^{13} \mathrm{C}$ NMR δ (DMSO) 111.8, 113.3, 114.8, 121.7, 122.1, 123.1, 126.9, 128.9, 132.6, 134.9, 140.0, 142.1, and 144.6.
101. $\mathrm{Mp} 87-89^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: C, 60.5 ; H, 4.1; $\mathrm{N}, 21.6$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{4}$: C, $60.35 ; \mathrm{H}, 4.3 ; \mathrm{N}$, 21.7%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3348,3231,3042,2950,2856,1601$, 1580, 1441, 1281, 1154, 1072, 906, 742, and 521; ${ }^{1} \mathrm{H}$ NMR δ $4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.10-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.28(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 7.31(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 7.42-7.52$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.17(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 50.6$, 110.1, 118.8, 121.4, 125.6, 125.7, 125.8, 130.4, 130.6, 133.9, 134.3, 138.4, and 145.1 .

Reaction of 6 a with a mixture of allyl bromide and benzyl bromide. In accordance with the aforementioned general procedure, a mixture of $\mathbf{6 a}(330 \mathrm{mg}, 1.32 \mathrm{mmol})$, allyl bromide ($191 \mathrm{mg}, 1.58 \mathrm{mmol}$), benzyl bromide ($270 \mathrm{mg}, 1.58$ $\mathrm{mmol})$, and n-BuLi (3.30 mmol) in THF was stirred for 1 h at $-78^{\circ} \mathrm{C}$ to room temperature for 2 h . TLC (silica gel, EtOAc: n-hexane $=1: 4)$ showed four major spots $\left(R_{\mathrm{f}}=0.79,0.70\right.$, 0.42 , and 0.27). The mixture was chromatographed on a silica gel $\left(2.5 \times 13 \mathrm{~cm}^{2}\right)$. Elution with EtOAc and n-hexane (1:6) gave $\mathbf{8 a}(40 \mathrm{mg}, 7 \%)$, a mixture of compounds (114 mg), $\mathbf{9} \mathbf{a}$ ($37 \mathrm{mg}, 12 \%$), and 10a ($29 \mathrm{mg}, 10 \%$). Separation of the mixture has been unsuccessful. However, the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture indicated that the mixture consisted of $8 \mathbf{a}$ (39 $\mathrm{mg}, 9 \%$) and 2-(N-allyl- N-benzylamino)-3-(benzotriazol-1-yl)2 H -indazole (23) ($75 \mathrm{mg}, 15 \%$). FAB MS showed mass
number $(m / z) 331$ and 381 , which corresponding to the molecular weights of 8a plus 1 and $\mathbf{2 3}$ plus 1, respectively.
23. Viscous liquid (mixed with 8a); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3056$, 2924, 2840, 1628, 1600, 1554, 1523, 1444, 1370, 1226, 1160, 990, 942, 830, 740, and 520; ${ }^{1} \mathrm{H}$ NMR $\delta 3.97(1 \mathrm{H}, \mathrm{d}, J 4.6$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.06(1 \mathrm{H}, \mathrm{d}, J 16.9$, $\left.=\mathrm{CH}_{2}\right), 5.14\left(1 \mathrm{H}, \mathrm{d}, J 17.2,=\mathrm{CH}_{2}\right), 5.71-5.87(1 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}), 6.77-6.97(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.01-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.30-7.51(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.85(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH})$, and 8.21 (1H, d, J 8.3, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 61.1,61.6,110.4,118.7$, $120.5,124.2,124.8,127.5,128.1,128.6,128.7,128.9,129.5$, $129.6,132.8,134.7,135.9,145.4$, and 145.5 .

Reaction of 6 a with allyl bromide in the presence of various bases. In accordance with the aforementioned general procedure, $6 \mathbf{a}(200 \mathrm{mg}, 1.25 \mathrm{mmol})$ was treated with bases such as tert-BuLi $(1.88 \mathrm{mmol}), \mathrm{NaNH}_{2}(1.88 \mathrm{mmol}), \mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}(1.88$ $\mathrm{mmol})$, LDA (1.88 mmol) followed by TMEDA $(145 \mathrm{mg}, 1.25$ $\mathrm{mmol})$, and $n-\mathrm{BuLi}(1.88 \mathrm{mmol})$ followed by tert-BuOK (140 mg , $1.25 \mathrm{mmol})$ in THF (25 mL) for 1 h at $-78^{\circ} \mathrm{C}$ and then 2 h at room temperature. The only exception was the reaction with NaH (1.88 mmol) for 5 h at room temperature. The reaction was quenched by addition of water (30 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined extract was dried over MgSO_{4}. Chromatography ($2.5 \times 10 \mathrm{~cm}^{2}$, EtOAc: $n-$ hexane $=1: 5$) of the residue gave unreacted $\mathbf{6 a}$ and $\mathbf{8 a - 1 0 a}$, depending on the bases. The results are summarized in Table 3.

General procedure for the reactions of simple aryl azides with \boldsymbol{n}-BuLi. To a stirred solution of aryl azides $(4.88 \mathrm{mmol})$ in THF (25 mL) for 1 h at $-78^{\circ} \mathrm{C}$ was added n - BuLi (9.76 mmol). The mixture was stirred for 2 h at room temperature and worked up as usual. Chromatography of the residue using a mixture of EtOAc and n-hexane (1:10) gave alkyl aryl amines 22, aryl amines 22, and unreacted aryl azides.

Reaction with p-azidotoluene. In accordance with the aforementioned general procedure, p-azidotoluene (540 mg , $4.06 \mathrm{mmol})$ was treated with $n-\mathrm{BuLi}(8.12 \mathrm{mmol})$ to give p-toluidine (21a) ($300 \mathrm{mg}, 69 \%$), N-butyl- p-toluidine [14] (22a) $(53 \mathrm{mg}, 8 \%)$ and unreacted o-azidotoluene ($5 \mathrm{mg}, 1 \%$).

Reaction with o-azidotoluene. In accordance with the aforementioned general procedure, o-azidotoluene $(650 \mathrm{mg}$, $4.88 \mathrm{mmol})$ was treated with $n-\mathrm{BuLi}(9.76 \mathrm{mmol})$ to give o-toluidine (21b) (397 mg, 76\%), N-butyl-o-toluidine [14] (22b) $(48 \mathrm{mg}, 6 \%)$ and unreacted o-azidotoluene ($13 \mathrm{mg}, 2 \%$).

Reaction with o-azidoethylbenzene. In accordance with the aforementioned general procedure, o-azidoethylbenzene (520 $\mathrm{mg}, 3.53 \mathrm{mmol}$) was treated with $n-\mathrm{BuLi}(7.06 \mathrm{mmol})$ to give o-ethylamine (21c) ($295 \mathrm{mg}, 69 \%$) and N-butyl-2-ethylphenyl amine [15] (22c) ($50 \mathrm{mg}, 8 \%$).

Reaction with 2-azidodiphenylmethane. In accordance with the aforementioned general procedure, 2-azidodiphenylmethane ($500 \mathrm{mg}, 2.39 \mathrm{mmol}$) was treated with n - BuLi (4.78 $\mathrm{mmol})$ to give o-(n-butylamino)diphenylmethane [16] (22d) ($40 \mathrm{mg}, 7 \%$) and 2-benzylaniline [17] (21d) ($315 \mathrm{mg}, 72 \%$).

Reaction of $6 \mathbf{a}$ with methylmagnesium bromide. To a solution of methylmagnesium bromide ($250 \mathrm{mg}, 2.10 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $6 \mathbf{6}(350 \mathrm{mg}, 1.40 \mathrm{mmol})$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then at room temperature for 2 h . The mixture was worked up as usual and chromatographed on a silica gel $\left(2.5 \times 5 \mathrm{~cm}^{2}\right)$ using a mixture of EtOAc and n-hexane (1:1) to give $2-[($ benzotriazol-1-yl)methyl]phenyl methyltriazene (13) (338 mg, 91\%). Mp 133-
$135^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-n$-hexane) (Found: $\mathrm{C}, 63.0 ; \mathrm{H}, 5.3 ; \mathrm{N}$, 31.65. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6}$: C, 63.1; H, 5.3; N, 31.6\%); $v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3263,3066,3003,2954,1431,1371,1220,1077$, $943,746,718$, and $531 ;{ }^{1} \mathrm{H}$ NMR $\delta 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.16$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.07-7.07(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.25-7.38(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.42-7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.05(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArH})$, and $8.36(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 48.4,110.7,120.2,124.2$, 126.7, 127.5, 129.4, 129.6, 133.4, and 146.6.

Preparation of 1-(2-aminophenylmethyl)benzotriazole 10a. In accordance with the literature procedure [7], a solution of 1-(2-azidophenylmethyl)benzotriazole (6a) ($250 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ in a mixture of THF $(30 \mathrm{~mL})$ and $\mathrm{MeOH}(0.3 \mathrm{~mL})$ was treated with $\mathrm{NaBH}_{4}(12 \mathrm{mg}, 0.30 \mathrm{mmol})$. The mixture was heated at reflux for 2 h . Work-up gave 10a ($202 \mathrm{mg}, 90 \%$).

Reaction of 10 a with allyl bromide in the presence of \boldsymbol{n} BuLi. To a stirred solution of $\mathbf{1 0 a}(202 \mathrm{mg}, 0.90 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added n-BuLi (2.25 mmol) and allyl bromide ($272 \mathrm{mg}, 2.25 \mathrm{mmol}$). After being stirred for 2 h at room temperature, the mixture was worked up as usual. Chromatography $\left(2.5 \times 13 \mathrm{~cm}^{2}\right)$ using a mixture of EtOAc and n-hexane (1:4) as an eluent gave allyl[2-\{1-(benzotriazol-1-yl)-3-butenyl\}phenyl]amine (16) (14 mg, 5\%), diallyl[2-\{(benzotriazol-1yl)methyl \}phenyl]amine (15) (89 mg, 33\%), allyl[2-\{(benzotria-zol-1-yl)methyl \}phenyl]amine (14) ($90 \mathrm{mg}, 38 \%$).
14. Viscous liquid (Found: C, 72.65; H, 5.9; N, 21.4. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4}$: C, $72.7 ; \mathrm{H}, 6.1 ; \mathrm{N}, 21.2 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $3260,3054,2928,2865,1603,1480,1446,1316,1228,1156$, 994, 742, and 526; ${ }^{1} \mathrm{H}$ NMR $\delta 3.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 4.95(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}), 5.14\left(1 \mathrm{H}, \mathrm{d}, J 11.8,=\mathrm{CH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{d}, J 17.6$, $\left.=\mathrm{CH}_{2}\right), 5.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.83-5.98(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 6.65$ $(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 6.76(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.25(1 \mathrm{H}, \mathrm{t}, J$ 7.6, ArH), 7.32-7.46 (3H, m, ArH), $7.54(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH})$, and $8.05(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 46.4,51.1,110.5$, $112.2,116.6,117.1,118.6,120.5,124.4,127.9,130.8,131.2$, 133.2, 135.0, 146.7, and 147.4.
15. Viscous liquid (Found: C, 75.2; H, 6.5; N, 18.25. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4}$: C, $75.0 ; \mathrm{H}, 6.6 ; \mathrm{N}, 18.4 \%$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ 3056, 3001, 2948, 2920, 1608, 1511, 1490, 1442, 1248, 1110, $996,910,740,694$, and $516 ;{ }^{1} \mathrm{H}$ NMR $\delta 3.65(4 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.\mathrm{NCH}_{2}\right), 5.17\left(2 \mathrm{H}, \mathrm{d}, J 11.5,=\mathrm{CH}_{2}\right), 5.23(2 \mathrm{H}, \mathrm{d}, J 17.2$, $\left.=\mathrm{CH}_{2}\right), 5.83-5.92(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.87(1 \mathrm{H}$, $\mathrm{d}, J 8.2, \mathrm{ArH}), 7.01(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.22-7.43(6 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.08(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH})$.
16. Viscous liquid (Found: C, 74.9; H, 6.5; N, 18.6. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4}: \mathrm{C}, 75.0 ; \mathrm{H}, 6.6 ; \mathrm{N}, 18.4 \%$); $v_{\max }$ (film)/ cm^{-1} $3271,3048,2920,1624,1489,1445,1300,1256,1221,1154$, 996, 740, and 521; ${ }^{1} \mathrm{H}$ NMR $\delta 3.25-3.34(1 \mathrm{H}, \quad \mathrm{m}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.45-3.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.69$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.54(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.98-5.14(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\left.\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.68-5.89(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\left.\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.14(1 \mathrm{H}$, dd, J 9.4 and $6.2, \mathrm{CH}), 6.63(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 6.82(1 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{ArH}), 7.28-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-$ $7.46(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.52(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH})$, and $8.04(1 \mathrm{H}, \mathrm{d}$, J 7.2, ArH); ${ }^{13} \mathrm{C}$ NMR $\delta 36.5,46.4,60.8,110.9,112.5,116.5$, $117.3,119.1,120.5,121.1,124.4,127.7,127.9,130.3,132.5$, 133.7, 134.9, 146.8, and 147.1.

Acknowledgments. This work was supported by the S. N. U. foundation of Overhead Research Fund and Kolon Life Science, Inc.

REFERENCES AND NOTES

[1] (a) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem Rev 1998, 98, 409; (b) Katritzky, A. R.; Henderson, S. A.; Yang, B. J. Heterocycl Chem 1998, 35, 1123; (c) Katirtzky, A. R. J. Heterocycl Chem 1999, 36, 1501; (d) Katritzky, A. R.; Rogovoy, B. V. Chem Eur J 2003, 9, 4586; (e) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Idzik, K. R.; El-Gendy, B. E.-D. M.; Soloducho, J. Tetrahedron 2007, 63, 6477.
[2] (a) Kim, T.; Kim, K.; Park, Y. Eur J Org Chem 2002, 493; (b) Kim, T.; Kim, K. Tetrahedron Lett 2002, 43, 3021.
[3] (a) Dyall, L. K. In the Chemistry of Functional Group, Supplement D, Part 1, Patai, S.; Rapport, Z., Eds.; Wiley: New York, 1983, pp 287-320; (b) Duerr, H.; Kober, H. Top Curr Chem 1976, 66, 89; (c) Abbe, L. Chem Rev 1969, 69, 345; (d) Badiei, Y. M.; Krishnaswamy, A.; Melzer, M. M.; Warren, T. H. J Am Chem Soc 2006, 128, 15056.
[4] (a) Sieh, D. H.; Wilbur, D. J.; Michejda, C. J. J Am Chem Soc 1980, 102, 3883; (b) Di Nunno, L.; Scilimati, A. Tetrahedron 1986, 42, 3913; (c) Benati, L.; Bencivenni, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Scialpi, R.; Spagnolo, P.; Zanardi, G. J Org Chem 2005, 70, 3046.
[5] (a) Smith, P. A. S.; Brown, B. B. J Am Chem Soc 1951, 73, 2438; (b) Mornet, R.; Leonard, N. J.; Theiler, J. B.; Doree, M. J Chem Soc Perkin Trans 1, 1984, 879. (c) Alajarin, M.; Lopez-Lazaro, A.; Vidal, A.; Berna, J. Chem Eur J 1998, 4, 2558.
[6] Kang, Y. H.; Kim, K. J Heterocycl Chem 1997, 34, 1741.
[7] Soai, K.; Yokoyama, S.; Ookawa, A. Synthesis 1987, 48.
[8] For synthesis of 2 H -indazoles, refer to (a) Song, J. J.; Yee, N. K. Org Lett 2000, 2, 519, and references therein; (b) Taher, A.; Ladwa, S.; Rajan, S.; Weaver, G. W. Tetrahedron Lett 2000, 41, 9893; (c) Kuvshinov, A. M.; Gulevskaya, V. I.; Rozkov, V. V.; Shevelev, S. A. Synthesis 2000, 1474; (d) Langa, F.; de la Cruz, P.; Delgado, J. L.; Haley, M. M.; Shirtcliff, L.; Alkorta, I.; Elguero, J. J Mol Struct 2004,

699, 17; (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett 2005, 46, 5387; (f) Rosati, O.; Curini, M.; Marcotullio, M. C.; Macchiarulo, A.; Perfumi, M.; Mattioli, L.; Rismondo, F.; Cravotto, G. Bioorg Med Chem 2007, 15, 3463.
[9] (a) Bosch, I.; Costa, A. M.; Martin, M.; Urpi, F.; Vilarrasa, J. Org Lett 2000, 2, 397; (b) Hossain, M. T.; Timberlake, J. W. J Org Chem 2001, 66, 4409; (c) Nyffeler, P. T.; Liang, C.-H.; Koeller, K. M.; Wong, C.-H. J Am Chem Soc 2002, 124, 10773; (d) Kamal, A.; Laxman, E.; Arifuddin, M. Tetrahedron Lett 2000, 41, 7743; (e) Kamal, A.; Reddy, P. S. S. M.; Reddy, D. R. Tetrahedron Lett 2002, 43, 6629; (f) Kamal, A.; Ramana, K. V.; Ankati, H. B.; Ramana, A. V. Tetrahedron Lett 2002, 43, 6861; (g) Salunkhe, A. M.; Ramachandran, P. V.; Brown, H. C. Tetrahedron 2002, 58, 10059; (h) Sureshan, K. M.; Ikeda, K.; Asano, N.; Watanabe, Y. Tetrahedron Lett 2004, 45, 8367; (i) Kudaj, A.; Olma, A. Tetrahedron Lett 2007, 48, 6794.
[10] Bartra, M.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett 1987, 28, 5941.
[11] Kawanisi, M.; Otani, I.; Nozaki, H. Tetrahedron Lett 1968, 9, 5575.
[12] (a) Catalan, J.; del Valle, J. C.; Claramunt, R. M.; Boyer, G.; Laynez, J.; Gomez, J.; Jimenez, P.; Tomas, F.; Elquero, J. J Phys Chem 1994, 98, 10606; (b) Ballesteros, P.; Elguero, J.; Claramunt, R. M.; Faure, R.; Foces-Foces, C.; Cano, F. H.; Rousseau, A. J Chem Soc Perkin Trans 2, 1986, 1677.
[13] Software is HyperChem version 5.01.
[14] Hamann, B. C.; Hartwig, J. F. J Am Chem Soc 1998, 120, 7369.
[15] Meng, Y.; Zhao, M.; Zhang, D. Shenyang Huagong Xueyuan Xuebao 1997, 11, 11.
[16] Yudin, L. G.; Rumyantsev, A. N.; Sagitullin, R. S.; Kost, A. N. Chem Heterocycl Compd 1983, 19, 57.
[17] Jones, G.; Long, B. D.; Thorne, M. P. J Chem Soc Perkin Trans 2 1992, 903.

[^0]: ${ }^{\text {a }}$ Isolated yields.
 ${ }^{\mathrm{b}}$ All data were obtained when alkyl bromides $(\mathrm{X}=\mathrm{Br})$ were used. Number in the parenthesis represents yields when iodide was used.
 ${ }^{c}$ When $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ was used, compounds $\mathbf{1 2 c}\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $\mathbf{1 7}$ were additionally isolated in 18 and 3% yields, respectively, whereas only 12c was additionally isolated in 13% yield when $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{I}$ was used.
 ${ }^{\mathrm{d}}$ When $n-\mathrm{BuBr}$ was used, compound $\mathbf{1 8}$ was additionally isolated in 11% yield.
 ${ }^{\mathrm{e}}$ Yields calculated on the basis of the intensities of the ${ }^{1} \mathrm{H}$ NMR spectra of a mixture of $\mathbf{1 0}$ and $\mathbf{1 1}$.
 ${ }^{\mathrm{f}}$ Unidentifiable complex mixtures were obtained when $\mathrm{R}^{1}=5-\mathrm{NO}_{2}$.

